28E46P

JT-60SAプラズマにおける制御範囲の評価とシナリオ開発 Assessment of the range of controls in JT-60SA plasmas and scenario development

井手俊介¹, 相羽信行¹, BOLZONELLA Tommaso², CHALLIS Clive³, 藤田隆明¹, GIRUZZI Gerardo⁴, JOFFRIN Emmanuel⁴, 濱松清隆¹, 林伸彦¹, 本多充¹, 星野一生¹,川島寿人¹, 栗田源一¹, 松永剛¹, 宮田良明¹, 仲野友英¹, 清水勝宏¹, 白石淳也¹, 鈴木隆博¹, 武智学¹, 浦野創¹ ¹原子力機構, ²RFX イタリア, ³CCFE 英国, ⁴CEA IRFM フランス

IDE Shunsuke¹, AIBA Nobuyuki¹, BOLZONELLA Tommaso², CHALLIS Clive³, FUJITA Takaaki¹, GIRUZZI Gerardo⁴, JOFFRIN Emmanuel⁴, HAMAMATSU Kiyotaka¹, HAYASHI Nobuhiko¹, HONDA Mitsuru¹, HOSHINO Kazuo¹, KAWASHIMA Hisato¹, KURITA Gen-ichi¹, MATSUNAGA Go¹, MIYATA Yoshiaki¹, NAKANO Tomohide¹, SHIMIZU Hatsuhiro¹, SHIRAISHI Junya¹, SUZUKI Takahiro¹, TAKECHI Manabu¹, URANO Hajime¹ ¹JAEA, ²RFX Italy, ³CCFE UK, ⁴CEA IRFM France

One of the main goals of JT-60SA project is to achieve steady-state sustainment of a high normalized pressure (β_N) plasma, which is required in the ITER steady-stat operation and DEMO. Plasma control plays a key role to accomplish this goal. Assessment of capabilities in controlling key plasma parameters to access and sustain a high β_N plasma in JT-60SA has been carried out using predictive simulations by using TOPICS with emphasis on controllability with actuators, including not only heating and current drive but also fueling and pumping system. It is confirmed that the safety factor profile, which is believed to play an important role for confinement improvement, can be prepared appropriately at the plasma current ramp-up phase in a wide extent within capability of the installed ECRF system. At the flat-top of a high pressure and high bootstrap current plasma, it is also confirmed that the installed NB system can modify the safety factor profile and the confinement property within the planned capabilities. In the figure shown is the result in which upper N-NB (more on-axis) is switched to lower N-NB (more off-axis) in a 2.3MA high β_N plasma. With the switch-over of N-NB, q_{min} is raised from below 1.5 to above 1.5, this could have impact on the MHD stability and the ITB foot shifts outward. It is confirmed that impurity seeding in the SOL and the divertor region can maintain the heat flux within the divertor heat tolerance keeping the separatrix density level acceptable.

(a) The total and NB driven current profiles just before the N-NB beam line switch over (dashed lines) and 10 s after the switch over (solid lines). The q profile (b) and the electron temperature profile (c) just before (dashed line) and 10 s after (solid line) the switch over.