LHDの低βプラズマに対する最外殻磁気面の数値的決定

Numerical determination of the last closed magnetic surface for low beta plasmas in the LHD

赤澤眞之1、佐々木壮一郎1、松本裕1、板垣正文1、關良輔2、鈴木康浩2、渡邊清政2 Masayuki Akazawa¹⁾, Soichiro Sasaki¹⁾, Yutaka Matsumoto¹⁾, Masafumi Itagaki¹⁾, Ryosuke Seki²⁾, Yasuhiro Suzuki²⁾, Kiyomasa Watanabe²⁾ 1北大工,2核融合研 ¹Hokkaido Univ., ²NIFS

Introduction: The 3-D Cauchy condition surface (CCS) method code, 'CCS3D', is now under development to reconstruct the 3-D magnetic field profile outside a non-axisymmetric fusion plasma using only magnetic sensor signals [1]. A numerical technique to determine the LCMS has also been tested for the plasma with $\langle \beta \rangle = 2.7\%$ in the LHD [2]. Using the radial basis function (RBF) expansion, the Poincaré plot is converted to contours of a 'quasimagnetic surface' as a function of the r-coordinate of the starting point (r_{start}) in the magnetic field line tracing. Introducing the 'inside/outside' ratio related to the scatter in the Poincaré plot, the contour where the ratio jumps is taken as a best estimate for the location of the LCMS. This scheme is based on the assumption that there is much difference in the level of numerical dirtiness between the regions inside and outside the LCMS, which is caused by the vacuum field assumption in the CCS method. Considering the assumption, it should be tested whether the method ends in failure for a low β plasma configuration.

Test calculations and results: The same procedure for the plasma with $\langle \beta \rangle = 2.7\%$ was repeated for plasmas with $\langle \beta \rangle = 1.0\%$ and $\langle \beta \rangle = 2.0\%$ in the LHD. After obtaining the Poincaré plot points, the variations in the 'inside/outside' ratio were given as shown in figure 1. The ratio jumps at $r_{start} = 4.38$ m for the $\langle \beta \rangle = 1.0\%$ case. The contour of quasi-magnetic surface corresponding to this starting point was extracted as shown in figure 2.

Figure 2. Reconstructed LCMS for $\langle \beta \rangle = 1.0\%$. The reference LCMS was given from the field line tracing based on the field profile calculated using the 3D MHD equilibrium code HINT2 [3].

Conclusion: The extracted LCMS agrees fairly well with the reference LCMS even for $\langle \beta \rangle = 1.0\%$. The authors believe that the accuracy of an extracted LCMS is acceptable at least for operating control purposes. References

[1] Itagaki, M., Maeda, T., Ishimaru, T., Okubo, G., Watanabe, K., et al. 2011 Plasma Phys. Control. Fusion 53 105007

- [2] Akazawa, M., Okubo, G., Matsumoto, Y., Itagaki, M., Seki, R. et al. 2011 Proc. PLASMA2011, Kanazawa, 23P067-P
- [3] Suzuki, Y., Nakajima, N., Watanabe, K., Nakamura, Y. and Hayashi, T. 2006 Nucl. Fusion 46 L19