

Confinement Improvement in RFP using PPCD

PPCDによる逆磁場ピンチ(RFP)の 閉じ込め向上実験

一 電流分布制御により閉じ込め向上を実現 手法: Pulsed Poloidal Current Drive (PPCD)

産業技術総合研究所: 八木康之、小口治久、平野洋一、島田寿男、榊田創、関根重幸 U. Wisconsin : B. E. Chapman, J.S. Sarff UCLA: D. L. Brower

1. 標準RFPとPPCDの基本原理 2. PPCDの運転方法

3. TPE-RX (AIST)におけるPPCD実験 4. MST (U. Wisc.) におけるPPCD実験 (電流密度計測) 5. PPCD実験データベースが示す2つの傾向

6. まとめ

By courtesy of J S. Sarff, MST

RFPにおける電流分布制御効果

By courtesy of J S. Sarff, C. R. Sovinec, et al., MST

Poincare Plots of Magnetic Field Lines Parallel Current Standard RFP J(r)-Controlled RFP 2π Total w/ Auxiliary idal Angle J B B^2 Ad Hoc Auxiliary Force 0 0 0 r/a r/a r/a **Standard RFP** Current **Stochasticity Reduces** (Tearing Insta. dominates) Control (=>

PPCD)

產総研 TPE-RX装置:中型、1MA

TPE-RX

TPE-RX

世界三大RFPの一つ 1998年よりRFP 実験開始 GOAL:RFP閉じ込めの理解 と向上 R/a = 1.72/0.45 m $I_p = 0.5 MA$ (設計 :1MA) $\tau_d = 0.1 s$

標準RFPの閉じ込め性能
$T_{e0} < 0.7 keV$
$T_i < 0.5 \ keV$
$n_{el} < 3 \times 10^{-19} m^{-3}$
$\beta_n < 20 \%$
$\tau_E < 2 ms$

TPE-RXでPPCD を段階的に増強

閉じ込めはs-PPCD < d-PPCD < 5-PPCDの順で良い

TPE-RX

TPE-RX

<u>d-PPCDでt_Eが5倍に向上</u>

PPCD Std. RFP d-PPCDで閉じ込めを計 V_{1000} ref. ref. 160 400 PPCD **測。**τ_Eが約5倍に増加。 300 120 I ^p A : 0 9 shot av 200 PPCD時、F (= $B_{tw}/<B_t$ >) 100 **TPE-RX** Standard d-PPCD LS は過渡的に深くなる measure ment Ο 2.5ot av. 2.0 $I_p(MA)$ 0.35 0.32 1.5 Max./F/ 0.15 0.80 ref. 1.0 ГТ 0.5 $\Theta (=B_p/\langle B_t \rangle)/JFO$ Max. Θ 2.24 1.51 0.0 減少に伴い増加する -0.5 530 (**x** 1.7) T_{e0} (eV) **900** measurement $^{-1.0}_{1200}$ (x 1.2)n_{el} T_{e0} **T**_i (eV) 340 **390** 1000 1.0 (PPCD) (PPCD) $T_{e0}, T_{i}(eV)$ (Std.) 0.8 * n_{el}^{*} (10¹⁹/m³) 0.6 **(x 1.8)** 1.0 800 (Std.) $\overrightarrow{00}_{0.6}$ **T**_i (Std.) 600 12 **(x** 2) β_p (%) 6 0.4 اللي في 400 3.5 **(x** 5) $\tau_E(ms)$ 0.7 200 0.2 (PPCD) 0.0 0 20 40 80 0 60 time (ms) PPCD時、電子密度・ 温度共に上昇

PPCD時磁場揺動が減少する

TPE-RX

径方向磁場分布の時間変化を比較

Madison Symmetric Torus (MST)

U. Wisconsin, Madison, U.S.A. $R = 1.5 \text{ m}, a = 0.5 \text{ m}, I \quad 0.5 \text{ MA}$

By courtesy of J S. Sarff, MST B. E. Chapman, et al., Phys. Rev. Lett. 87, 205001 (2001)

MST	Standard	5-PPCD	
I _p (MA)	0.21	0.21	
T _{e0} (eV)	200	600	(x 3)
$n_{el}^{\ *} (10^{19}/m^3)$	0.8	0.7	(x 0.9)
β _p (%)	9	18	(x 2)
$\tau_E(ms)$	1	10	(x 10)

Faraday Rotation Measurement in MST

6ケースのPPCD実験のまとめ

PPCD運転条件と諸量の変化率

	MST ^[1]	MST ^[2]	MST ^[3]	RFX ^[4]	TPE-RX ^[5]	TPE-RX ^[6]
パルス数	1	4	5	5	1	2
パルス幅	5	7	11	10	5	10 (ms)
$Max.E_{\theta}$	1.6			4344	2.1	1.8 (V/m)
Max./F/	0.48		でも電源増)向 ト家増加	1593 17	0.26	0.81
Max.0	1.98	2.0	「リ <i>上 平/目川</i> 	4	1.62	2.14
I _p	7=+~	向上家	0.21	80	0.30	0.35 (MA)
		[4]	3.0-5.0	1.75	1.34	1.7
T _i 変化率	1.24		1.0	(T _i	1.16	1.2
n _{el} 変化率	1.0	Ъ /	1.0	0.9-1.0	1.40	1.8
db ² 変化率	0.56	0.28	0.06-0.25	0.30	6-0.7	0.5
τ _p 変化率	1.7	5	8	-	1.	-
ß. 夜化率	1.0	1.5	1.6	1.2	1.9	2
<u>τ</u> _E 変化率	2.2	5	10	2.4	1.7	5

[1] J. S. Sarff et al., PRL 72 (1994) 3670. [2] J. S. Sarff et al., PRL 78 (1997) 62. [3] B. E. Chapman et al., PRL 87 (2001) 205001. [4] R. Bartiromo et al., PRL 82 (1999) 1462. [5] Y. Yagi et al., **PPCF 44 (2002)** 335. [6] Y. Yagi et al., to be submitted

Ц

6 ケースのPPCD実験結果から_Eの向上率に関する二つの 傾向が抽出できる

逆磁場ピンチにおいてPPCDによる電流分布制御により 閉じ込めが向上することをTPE-RX, MST等を例に紹介

- PPCDは電流分布制御で、より高い閉じ込めを得る
 手法
- 2. TPE-RXのd-PPCDで_{T_E}の5倍増(3.5 ms)を実現
- 3. MSTで_{TE}の10倍増(10ms)を実現
- 4. MSTでPPCDによる電流分布の変化を実測
- 5. $\tau_{\rm E}$ の向上は、 δb^2 が小さく、 I_{θ} が大きい程、大きい
- 6. 同様の効果をRF等による電流駆動で期待できる