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� Toroidal (parallel to magnetic field) current in tokamaks:

1. Introduction
� j(r) or q(r) is closely related to transport and stability in tokamaks.
  - Formation ITB with negative/weak magnetic shear.
  - Stability improvement with high li.

(3) externally driven
    (by NB/RF)
    non-inductive current

        jEX   --- controllable.

(2) bootstrap current 
   jBS∝∝∝∝∇∇∇∇p(r)/Bp 

   --- heat transport 
  and inner current.
    

(1) inductive (OH) 
     current
     jOH∝∝∝∝σσσσNCEφφφφ 
    ---diffusion of Eφφφφ.
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Current profile measurements (1)
� q(r) or Bp(r) measurement
      --- Faraday rotation, motional Stark

effect (MSE) ,....

� Especially, MSE diagnostics is
characterized by high spatial
resolution (by local measurement) and
high accuracy.
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Internal toroidal electric field Eφφφφ(r) can be evaluated in addition to q(r)
from time evolution of equilibrium; Eφφφφ (r)=-dΨΨΨΨp(r)/dt

Ψp

Eφφφφ

flux surface 
in a plasma
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Current profile measurements (2)
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2. Sustainment of large bootstrap
current fraction and

current profile control



� In steady operation of tokamak, jOH is zero and most of the
plasma current (>70%) should be carried by jBS while the rest by
jEX. (Large jOH can be locally and transiently generated even in full
CD plasma.)

Study on high fBS plasma is important.

p(r) and j(r) are closely linked to each other

Linkage of p(r) and j(r) under large fBS
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� Two issues:
 (1) Is there a stationary point

where p(r) and j(r) stay in
steady state ?

 (2) Can j(r) be controlled  by
small jEX ?

Linkage of p(r) and j(r) under large fBS
(cont.)
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�In JT-60U, high beta (ββββN>~2), high confinement (HH>~2) RS with
fBS~80% and fCD>~100% was maintained for 2.7 s.
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�Current profile was mainly
determined  by the bootstrap current.

�During 2.7s, ρρρρqmin and qmin were
kept stationarily.
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Sustainment of large fBS



0.3
0.4
0.5
0.6
0.7
0.8

5 6 7 8 9 10 11
time [s]

E35037

E35029
E32611E35007

0
1
2
3
4

E35037E35029

E35007E32611
βp

ρqmin

� In the experiment, raising ββββp (fBS) suppressed the shrinkage of
ρρρρqmin, which is a promising result for steady sustainment of ρρρρqmin
by the bootstrap current.

� Oscillatory behavior may happen in a longer time scale and hence
the experiment with a longer duration is needed.

JT-60U experiment Simulation for Tore Supra

Is there a stationary point ?



Current profile control demonstrated in RS
� Full non-inductive CD with BS(62%), LHCD and N-NBCD.
�  The radii of qmin and ITB-foot expanded

by peripheral LHCD. HHy2=1.4, ββββN=2-2.2,
ne/nGW=0.8 due to large ITB radius.

�  Reduction of the central q-value by
central N-NBCD.

� Feedback control of q(r) with real-time
q(r) measurement, demonstrated in JET,
should be applied in future.
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3. Current hole and current
drive in a current hole plasma



Current hole as a limit of strong RS and large fBS
� Increase of off-axis non-inductive
  (bootstrap) current
 -> Decrease of Etor(0) and j(0)
     (Formation of reversed shear)
 -> j(0) reach zero
     (Formation of current hole)
     No global instability with j(0)=0,

and stable sustainment.
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Stable existence of current hole
� The current hole was observed in JT-60U and JET. It persists

stably (several seconds) without any global instabilities in JT-
60U.

� High temperature plasma confined by off-axis Bp and ITB.
� Extends operation region of j(r) and enables very high fBS.
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�A large current hole will be a problem for confinement of αααα
particles in reactors. Control of current hole radius is required.

�  No response to ECCD in the current hole both for co- and
counter-CD. (“current clamp”).

�  Some mechanism to maintain the structure.
   --- anomalous resistivity? dynamo (vxB) due to instability ?
�  CD in the center of current hole is difficult

CD outside the current hole
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Control of current hole radius
� Reduction of the central q-value (outside the current hole) and

current hole radius has been demonstrated by central N-NBCD.
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�The response of j(r) seems to be
unordinary even outside the current
hole. This should be investigated
for the j(r) control outside the
current hole.
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4. Summary and discussions
� Development in j(r) measurement has progressed the j(r)

control research.

� Quasi-steady sustainment of 80% of fBS for several ττττE.
Next: longer sustainment for current diffusion time.

� j(r) control in RS with fBS~60% demonstrated.
  Next: (i) evaluate controllability in larger fBS. and (ii)

apply feedback control with real-time q(r) measurement.

� Current hole appears as a limit of strong RS and high fBS.
Stable existence and mechanism for clamping j(0)~0.

� The radius of current hole can be controlled, but the
response should be carefully investigated.

� Control of j(r) with high fBS is important, where p(r) and j(r)
are linked through heat transport and Eφφφφ diffusion.
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plasma is expected.


