S602 CIP 法によるレーザーアプレーション過程のシミュレーション

Simulation of Laser Ablation Process by CIP Method 矢部孝

大叩子

東工大 機械物理 Takashi Yabe Tokyo Institute of Technology

ナノ秒からミリ秒までの、レーザー加工のシミュレーションに関しては、色々なところで解説を書 いてきた。ここでは、この計算コードが果たしてフェムト秒レ

ーザーでも使えるかどうかを調べた結果のみを示す。

まずは、フォッカー・プランク方程式を CIP 法で解くこ とによって、フェムト秒レーザーの吸収過程を調べた。図 1(下) は、固体の表面にレーザーを照射した後での電子の熱流と温度 である。これを、縦軸を熱流、横軸を温度勾配として、図 1(上) にまとめた。固体側では、熱流と温度の関係は比例しており、 実線の古典理論(フーリエ則、Spitzer-Harm 理論)に一致して いる。一方、真空側では、熱流は温度勾配によらない、自由流 となっている。驚くべきことに、ほとんどパルス幅と同程度の 時間で古典的な熱伝導が実現している。この時点では、流体(イ オン)は全く動いていない。

従って、穴が形成されるのはこれよりもはるか後の段階で ある。しかも、このシミュレーションの示すとおり、この後の 過程は古典的な熱伝導理論で十分である。

実際に、この古典的な流体シミュレーションが実験を再現 することができるかどうかを調べてみよう。その前に、実験を よく吟味する必要がある。図2(左)のは実験データであるが、 レーザーの集光径がわからないので、ドイツのグループは、照 射痕から集光径を見積もってFluenceを求めた。

図2(右)はレーザーの集光径と照射痕との関係をシミュ レーションから求めたものである。フェムト秒レーザーといえ ども、倍以上ものずれが生じている。従って、実験を「解釈」 するときに、これをちゃんと議論しなければ意味がない。

シミュレーションでこのようにして求めた照射痕を用いて、 Fluenceを補正した(実験と同様 に)結果が図2(左)のである。 一方、本当の集光径から見積もったFluenceでデータを整理する とシミュレーション結果は、図の 破線ように大きくずれる。ドイツ のグループは、穴の深さの Fluence依存性を議論し、熱伝 導になる前の色々な物理過程 を提案しているが、実際には、 Fluenceの見積もりが違っていただけの話である。 $\log(T/\nabla T/\lambda_{fre})$

図1 フォッカープランクコードによ リ、フェムト秒レーザー照射後の電子 の挙動をシミュレーションした。(下) 温度と熱流空間分布(上)縦軸は熱 流で横軸は温度の空間スケール。極め て短い時間で、固体側の熱流は古典的 な熱伝導(実線)に近づく。

図2 (左)流体シミュレーションを用いて、レーザー強度とアブレーション深さを比較。白丸がシミュレーションで実験は黒四角。実験は、照射 痕から Fluence を見積もったが、シミュレーションもこれと同様にした。こ れとは別に、レーザー集光径で Fluence を出すと、破線のようになる。フェ ムト秒といえども、集光径と照射痕が大きく異なることを指摘した。(右) レーザー集光径に対する照射痕。シミュレーション(記号)は、照射痕が かなり大きくなることを示している。破線は、照射痕と集光径が一致する 線。