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Reduction in the strong singularity encountered
In the reconstruction analysis of eddy current profile

TR EE L 57 AT AT THLN 5 58OV R RPE DR E

Masafumi ItagakiV, Sanpei Akio®, Sadao Masamune® and Kiyomasa Watanabe®
BUHIESCY, =AY, Burd B2, s ed

YHokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo 060-8628, Japan
2Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
®National Institute for Fusion Science, 322-6 Oroshi-cho, Toki-city, Gifu 509-5292, Japan

Db A2, T060-8628 FLIR AT ALK AL135:7498 T H
2) i T A Ko, T 606-8585 ST T AR 5K AN 4 GG 1-MT
iR A BRI, T509-5202 I 5 R I il T 7 113226

In a reversed field pinch device, the ordinary Cauchy-condition surface (CCS) method cannot reconstruct
the magnetic flux profile accurately due to the strong eddy current flow on the shell. Boundary integrals of
the unknown eddy current density along the shell are added to the original CCS method formulation. As the
sensors are closely adjacent to the shell, the singular boundary integrals should be accurately evaluated.
This singularity can be damped out with the present subtraction technique based on the distance function
algorithm. The capability of the method is demonstrated for a test problem modelling the RELAX device.

1. Introduction

As strong eddy currents exist on the shell of the
reversed field pinch device, RELAX, the Cauchy
condition surface (CCS) method [1] based on
magnetic sensor signals needs to be modified to
reconstruct accurately the magnetic flux profile in
the device. The new term

#o,5s(r)B7(5 - r)dr(r) (1)

is added to each boundary integral equation in the
CCS method formulation. Here B is the
fundamental solution "~ or its derivative, while
Js denotes the linear density distribution of the

eddy current on the shell, which is integrated in the
poloidal direction along the shell.

2. Method

The boundary integral along the shell, Eq.(1),
should be performed very carefully. Since the
distance ¢=./(r—a)’+(z—b)*> between the sensor
position (a,b) and an integration point (r,z) on the
shell is very short, the following singularities [2]
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arise in the integration kernels when & —0.

In a boundary element (rg,,,) along the shell,
one here uses the notations G(¢&), #(¢) and
F, (&) for the Jacobian, the interpolation function,
and the corresponding asymptotic function (Eqgs.(2),

(3) or (4)), respectively. The general form of the
boundary integral over Ty, Iisrearranged as
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where G, and ¢, are the values of G(¢) and
#(&) at £=¢& on the boundary element that is the
nearest to the sensor under consideration. In Eq.(5),
the asymptotic function on the RHS is subtracted
from the original integrand, and this subtraction is
compensated by the analytical integral (the second
integral). The total integrand of the first integral has
no singularity and can be evaluated with the
ordinary Gaussian quadrature.

Ma and Kamiya [3] proposed the use of a
‘distance function’ for the boundary element
adjacent to the sensor position (a,b) as

(@) =Go\(6—&) +(ds /Gy)* (6)
where d, is the minimum distance from the point
(a,b) to the boundary element as shown in Fig.1,
which corresponds to the local coordinate &=¢&, .
Equation (6) agrees with ¢ in Egs.(2), (3) and (4)
when ¢é—¢& and d, —>0.
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For instance, a quantity in Eq.(3) can be rewritten in
the following form:
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The terms having a singularity can be integrated
analytically, e.g.,
j‘ (é B 50)
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Figure 2(a) and 2(b) are examples to compare the
integrands in terms of oy /ob before and after

damping out the singularity. The strong singularities
are efficiently damped out.

o0l T — T ™ 0.6F
. The modified integrand where
the singularity is damped out i
0.4t \
oF i
\\ 4 0.21 The modified integrand where \
\ 3 the singularity is damped out \,
8-01 \ 18 P
c . = Or N 7
8 y )f The original > \
5 { integrand € .
E .02 “! 18 02r /\’\
E ! F The original
{ 0.4r integrand \
-0.3 4
-0.6 [ (20 eddy current
(20 eddy current 'i/ (nodes ayre used.)
nodes are used.)
-04L. . 1 . 1 08k I 1 . L
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Dimensionless local coordinate ( &) Dimensionless local coordinate ( &)
(a) & =0.0,d, =8mm (b) & =0.5,d, =2mm
Fig.2. Integrands before and after damping out the
singularity

3. Numerical Examples

One here deals with a limiter configuration of the
RELAX device, assuming 40 flux loops and 40
tangential probes inside the shell. The CCS is
placed in a domain that can be supposed to be
inside the plasma. Figure 3 shows the variation in
the eddy current density on the shell for the cases
assuming 40 eddy current nodes. The vertical axis
denotes the current density, while the abscissa
means the poloidal angle. The dashed and the solid
curves in Fig.3 denote the reference and the

reconstructed variation in the eddy current density,
respectively. The reference solution was obtained
using the RELAX-Fit code [4].

Figure 4 shows the reconstructed flux profiles for
the 40 current node case. The dashed contours show
the reference solution, while the solid contours
indicate the reconstructed flux. Accurate results can
be observed even deep inside the plasma region.
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Fig.3. Reconstruction of the eddy current profile.
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Fig.4. Reconstruction of the magnetic flux profile.

4. Conclusions

The singularity in the boundary integral along the
shell can be damped out effectively by introducing
the present subtraction technique with the distance
function algorithm.
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