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In a reversed field pinch device, the ordinary Cauchy-condition surface (CCS) method cannot reconstruct 

the magnetic flux profile accurately due to the strong eddy current flow on the shell. Boundary integrals of 

the unknown eddy current density along the shell are added to the original CCS method formulation. As the 

sensors are closely adjacent to the shell, the singular boundary integrals should be accurately evaluated. 

This singularity can be damped out with the present subtraction technique based on the distance function 

algorithm. The capability of the method is demonstrated for a test problem modelling the RELAX device. 

 

 

1. Introduction 
As strong eddy currents exist on the shell of the 

reversed field pinch device, RELAX, the Cauchy 

condition surface (CCS) method [1] based on 

magnetic sensor signals needs to be modified to 

reconstruct accurately the magnetic flux profile in 

the device. The new term 
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is added to each boundary integral equation in the 

CCS method formulation. Here *B  is the 

fundamental solution *  or its derivative, while 

Sj  denotes the linear density distribution of the 

eddy current on the shell, which is integrated in the 

poloidal direction along the shell. 

 

2. Method 
The boundary integral along the shell, Eq.(1), 

should be performed very carefully. Since the 

distance 2 2( ) ( )r a z b      between the sensor 

position (a,b) and an integration point ( , )r z  on the 

shell is very short, the following singularities [2] 
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arise in the integration kernels when 0  . 

In a boundary element (
Shell, j

 ) along the shell, 

one here uses the notations ( )G  , ( )   and 

( )SF   for the Jacobian, the interpolation function, 

and the corresponding asymptotic function (Eqs.(2), 

(3) or (4)), respectively. The general form of the 

boundary integral over Shell, j  is rearranged as 
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where 
0G  and 

0  are the values of ( )G   and 

( )   at 
0   on the boundary element that is the 

nearest to the sensor under consideration. In Eq.(5), 

the asymptotic function on the RHS is subtracted 

from the original integrand, and this subtraction is 

compensated by the analytical integral (the second 

integral). The total integrand of the first integral has 

no singularity and can be evaluated with the 

ordinary Gaussian quadrature. 

Ma and Kamiya [3] proposed the use of a 

‘distance function’ for the boundary element 

adjacent to the sensor position (a,b) as 
2 2

0 0 0 0( ) ( ) ( / )d G d G     ,       (6) 

where 
0d  is the minimum distance from the point 

(a,b) to the boundary element as shown in Fig.1, 

which corresponds to the local coordinate 
0  . 

Equation (6) agrees with   in Eqs.(2), (3) and (4) 

when 
0   and 0 0d  . 
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Fig.1. The minimum distance 
0d  

 

For instance, a quantity in Eq.(3) can be rewritten in 

the following form: 
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The terms having a singularity can be integrated 

analytically, e.g., 
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Figure 2(a) and 2(b) are examples to compare the 

integrands in terms of * / b   before and after 

damping out the singularity. The strong singularities 

are efficiently damped out.  

 

 

 

 

 

 

 

0 0(a) 0.0, 8mmd         0 0(b) 0.5, 2mmd    

Fig.2. Integrands before and after damping out the 

   singularity 

 

3. Numerical Examples 
One here deals with a limiter configuration of the 

RELAX device, assuming 40 flux loops and 40 

tangential probes inside the shell. The CCS is 

placed in a domain that can be supposed to be 

inside the plasma. Figure 3 shows the variation in 

the eddy current density on the shell for the cases 

assuming 40 eddy current nodes. The vertical axis 

denotes the current density, while the abscissa 

means the poloidal angle. The dashed and the solid 

curves in Fig.3 denote the reference and the 

reconstructed variation in the eddy current density, 

respectively. The reference solution was obtained 

using the RELAX-Fit code [4]. 

Figure 4 shows the reconstructed flux profiles for 

the 40 current node case. The dashed contours show 

the reference solution, while the solid contours 

indicate the reconstructed flux. Accurate results can 

be observed even deep inside the plasma region. 

 

 

 

 

 

 

 

 

 

 

 
Fig.3. Reconstruction of the eddy current profile. 

 

 

 

 

 

 

 

 

 

 

 
 
Fig.4. Reconstruction of the magnetic flux profile. 

 

4. Conclusions 
The singularity in the boundary integral along the 

shell can be damped out effectively by introducing 

the present subtraction technique with the distance 

function algorithm. 
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