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We studied stability property of the numerical Cherenkov radiation in relativistic plasma flows by means of 
particle-in-cell simulations. With the implicit FDTD method for the Maxwell equations, we found that the 
instability was greatly inhibited with the CFL number of 1.0. The present result contrasts with the recently  
reported results [1,2,3] in which the magical CFL numbers were 0.5 and 0.7, respectively for their different 
explicit field solvers. In addition, we found higher order shape functions and a specific implicitness factor  
further suppressed the non-resonant type of the numerical instability. Applications of the obtained results 
enabled to examine a long-time evolution of a relativistic collisionless shock without significant numerical 
noise in the upstream. This property will allow us to investigate particle accelerations in relativistic shocks 
associated with, for example, gamma-ray bursts.

1. Introduction
Particle-in-cell (PIC) simulations have been used 

to study plasma dynamics in laboratory, space, and 
astrophysical  phenomena.  In  particular,  PIC 
simulations have been  powerful tools to investigate 
particle  accelerations  associated  with  explosive 
phenomena  in  astrophysical  objects,  such  as 
supernova remnant shocks and gamma-ray bursts.

In  PIC  simulations,  the  finite-difference  time-
domain (FDTD) method has  been employed as  a 
standard numerical  solver  for  the  electromagnetic 
fields.   The  FDTD  method  is  very  simple  and 
flexible, however it has been known that the phase 
speed  of   the  electromagnetic  wave  is  reduced 
numerically  less  than  the  light  speed  in  large 
wavenumber regions.  In  relativistic  plasma flows, 
the  numerical  dispersion  induces  a  non-physical 
numerical  instability  which  is  now known as  the 
numerical Cherenkov radiation [4].  This is one of 
the  critical  issues  in  examining  relativistic 
collisionless  shocks  by  multidimensional  PIC 
simulations with the FDTD method. 

To  suppress  the  numerical  instability,  several 
methods have been developed. In particular, it has 
been recently reported that  careful  choices  of  the 
CFL  number  greatly  inhibited  growth  of  the 
numerical  Cherenkov  instability  [1,2,3].  For  the 
FDTD method, this magical CFL number was 0.5. 
It  has  been  shown,  however,  that  this  stability 
property  depends  on  algorithms  of  solving  the 
Maxwell  equations,  and  interpolations  for  the 
electromagnetic fields and the current deposit.    

We  examined  the  stability  property  of  the 

numerical  Cherenkov instability  by means of  two 
-dimensional  PIC  simulations.  We  used  a  PIC 
simulation code package, pCANS, employing  the 
momentum  conserving  field  interpolation,  the 
density decomposition method [5], and the implicit 
FDTD method [6] for the Maxwell equations. 

2.  Numerical  Dispersion  Relation  of  Implicit 
FDTD scheme
 A numerical  dispersion  relation  of  the  implicit 
FDTD method in two dimensions (x-y) is obtained 
as

For  the  light  wave  with ωpe /ω≪1 and 
ωpeΔ t≪1  the  dispersion  relation  can  be 

simplified to 

where
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Since  the  imaginary  part  is  always  positive,  the 
implicit  FDTD  method  damps  high-frequency 
waves except for the case with θ = 0.5.

3. Results 
We  examined  two-dimensional  (x-y)  PIC 

simulations with periodic boundary conditions with 
128×128 cells. We initially set a relativistic plasma 
flow in the x direction with a Lorentz factor of Γ = 
100  with  100  particles  per  cell  for  each  species 
(electron and positron). The thermal velocity in the 
flow frame is 10% of the light speed. 

First,  we  examined with  various  CFL numbers 
ranging  from  0.4  to  1.0.  Fig.1  shows  that  the 
numerical  Cherenkov  instability  is  remarkably 
inhibited with the CFL number of 1.0. Difference in 
the field solver (implicit vs. explicit) resulted in the 
different magical CFL numbers (1.0 and 0.5-0.7).
  We also found in Fig.2 that with CFL = 1.0, a non-
resonant mode [7] still grows with a small growth 
rate.  This  mode  can  be  suppressed  by  adopting 
higher  order  shape  functions  (Fig.2(a)),  and  an 
optimal implicitness factor of θ = 0.501 (Fig.2(b)).

Fig.1. (a) Time evolutions of the magnetic energy and (b) 
growth rate of the numerical instability with various CFL 

number.

Fig.2. (a) Time evolutions of the magnetic energy for the 
first (black) and second (red) order shape functions. (b) 

Growth rate for different implicitness factors.

4 Summery
  We found that the magical CFL number for the 
pCANS code with the implicit  field solver is 1.0, 
and the adoption of the higher order shape function 
and  the  implicitness  factor  of  θ =  0.501  further 
suppressed  the  slowly-growing  mode  of  the 
numerical  Cherenkov  instability.  This  stability 

property  was  successfully  applied  to 
multidimensional  PIC  simulations  of  relativistic 
collisionless shocks.
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