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Comparison of Push-Forward Representations of Particle Flux in the Standard
Electrostatic Gyrokinetic Model
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Particle flux originally defined by an integral in terms of a particle distribution function and particle
coordinates can be represented as an integral in terms of a gyro-center distribution function and gyro-center
coordinates, which is called a push-forward representation of particle flux. Two formally different
representations are possible in the standard gyrokinetic model. To obtain the polarization flux in the
particle flux representation, a higher order solution for the scalar function generating the gyro-center
transformation is needed for the conventional representation in which the gyro-center part appears as the
pull-back transformation of the gyro-center distribution function. On the other hand, the lowest order
solution is sufficient for the other one in which the pull-back transformation of the distribution function

does not appear.

1. Introduction

The standard gyrokinetic model is formulated
by a two-step phase space transformation from
particle phase space to gyro-center phase space
which  consists of the  guiding-center
transformation and the following gyro-center
transformation [1]. Any particle fluid moment can
be represented as an integral in terms of a
gyro-center distribution function and gyro-center
coordinates, which is called a push-forward
representation. There exist two formally different
representations in the standard model [2]. The
two representations differ in the gyro-center
transformation part which contains effects of
electrostatic  potential fluctuations. In the
representation conventionally used to derive the
gyrokinetic Poisson equation, the gyro-center
transformation part appears as the pull-back
transformation of the gyro-center distribution
function and it is separated from the
guiding-center part. In contrast, they are
combined in the other representation in which the
pull-back transformation of the gyro-center
distribution function does not appear. Hence, this
is the more straightforward or pure push-forward
representation. The pure representation is used
for showing the correspondence between a
gyrokinetic model for flowing plasmas and the
standard model [3,4] and for constructing a
high-order gyrokinetic model [5].

In the standard electrostatic model, the
gyro-center transformation and its associated
transformations are described by the Poisson
brackets with scalar generating functions. Only the
lowest order term of the generating function at first
order S; is considered to derive the polarization
density term in the gyrokinetic Poisson equation.
While the polarization density appears in the
gyrokinetic Poisson equation, the polarization drift
does not appear as the gyro-center drift in the
standard gyrokinetic model. As a consequence, the
polarization drift flux is not included in the
gyro-center flux. The polarization drift flux is
recovered through the push-forward representation
of particle flux. A disparity between the two
representations becomes manifest in deriving the
polarization flux in the push-forward representation
of particle flux.

2. Conventional representation
Particle flux at position r is defined by

Ir'(r) = jd3xd3vf(x, v)§3(x—r) €Y)

where f is the particle distribution function. The
conventional push-forward representation of the
particle flux is given by [6]

I = f d®Z J|Tadv] (D) Te, F &3 ([Tad x| (Z) —r)
)
where Z=(X,U,u, &) is the gyro-center



coordinates, Tg,F is the pull-back transformation
of the gyro-center distribution function associated
with the gyro-center transformation, J is the
Jacobian of the guiding-center transformation, and
[Teex|(Z) =X+ po and [Telv](Z) =X+ p, .
Note that [Tgdx](Z) does not denote the particle
position in the gyro-center phase space and hence
the ExB drift is not included in X. Electrostatic
fluctuations are included in
TeyF = F +{Si,F} + - 3)

where {,} denote the standard guiding-center
Poisson brackets [7]. Usually only the lowest order

term, 51(1) = (e/Q) [ @dé&, is considered in the
pull-back transformation (3) where @ denotes the
gyro-phase dependent part of the electrostatic
potential. However, the higher order solution for S;
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s7 = Q(—at+Ub V)JSI aé (4

is needed to derive the polarization drift flux from
the conventional representation (2) [8]. Recall that
an equation determining S; is given by [6,9]

aS

—+ Sy Ho} =@ (5)
with the guiding-center Hamiltonian H, = uB +

mU?/2 and it is solved order by order under the
low frequency assumption. The time derivative

term in 51(2) yields the polarization drift flux.
Belova used the conventional representation to
derive an explicit representation of the
perpendicular  gyroviscous force from the
gyrokinetic model [10]. In the derivation, to

calculate FLR terms, not only 51(2) but also S, the
generating function at second order, must be
considered in the pull-back transformation.

3. Pure push-forward representation
The other exact representation is given by

r(r) = f d®Z JTgy Tel vF83(Tey Teéx — 1) (6)
where T Tgex =X+ po+p; and Ty Tgev =
X+ po +p, denote the nparticle position and
velocity in the gyro-center space, respectively, and
p1 = {X+ po,S1} is the gyro-center displacement
vector. This is the pure push-forward representation
because the pull-back transformation of the
distribution function does not appear. In the
representation the effects of electrostatic
fluctuations enter through p; and X mainly. It is
noted that X includes the ExB drift here. Using

the lowest order solution 51(1) and taking the long
wavelength limit @ = p, - Vo (X), we have

o+ —bxys®
The polarization drift flux is obtained from p,
directly. Thus the higher order term 51(2) is not

necessary for the representation (6).

4. Summary

We have compared two formally different
push-forward representations of particle flux in the
standard electrostatic gyrokinetic model by deriving
the polarization flux from them. The difference
between the two is the gyro-center transformation
part which contains S; , the scalar function
generating the gyro-center transformation. A high
order solution of S; including a time derivative
term is needed to obtain the polarization flux if we
use the conventional one in which the gyro-center
part appears as the pull-back transformation of the
distribution function. In contrast, the lowest order
solution is sufficient for the other pure
push-forward representation in which the time
derivative of the gyro-center displacement vector
gives the polarization flux directly. Furthermore,
the particle flux representation with FLR terms that
Belova calculated using the conventional
representation and high order solutions of
generating functions can be recovered using the
other one with the lowest order solution only [11].
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