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Particle flux originally defined by an integral in terms of a particle distribution function and particle 
coordinates can be represented as an integral in terms of a gyro-center distribution function and gyro-center 
coordinates, which is called a push-forward representation of particle flux. Two formally different 
representations are possible in the standard gyrokinetic model. To obtain the polarization flux in the 
particle flux representation, a higher order solution for the scalar function generating the gyro-center 
transformation is needed for the conventional representation in which the gyro-center part appears as the 
pull-back transformation of the gyro-center distribution function. On the other hand, the lowest order 
solution is sufficient for the other one in which the pull-back transformation of the distribution function 
does not appear. 

 
 
1. Introduction 

The standard gyrokinetic model is formulated 
by a two-step phase space transformation from 
particle phase space to gyro-center phase space 
which consists of the guiding-center 
transformation and the following gyro-center 
transformation [1]. Any particle fluid moment can 
be represented as an integral in terms of a 
gyro-center distribution function and gyro-center 
coordinates, which is called a push-forward 
representation. There exist two formally different 
representations in the standard model [2]. The 
two representations differ in the gyro-center 
transformation part which contains effects of 
electrostatic potential fluctuations. In the 
representation conventionally used to derive the 
gyrokinetic Poisson equation, the gyro-center 
transformation part appears as the pull-back 
transformation of the gyro-center distribution 
function and it is separated from the 
guiding-center part. In contrast, they are 
combined in the other representation in which the 
pull-back transformation of the gyro-center 
distribution function does not appear. Hence, this 
is the more straightforward or pure push-forward 
representation. The pure representation is used 
for showing the correspondence between a 
gyrokinetic model for flowing plasmas and the 
standard model [3,4] and for constructing a 
high-order gyrokinetic model [5]. 

In the standard electrostatic model, the 
gyro-center transformation and its associated 
transformations are described by the Poisson 
brackets with scalar generating functions. Only the 
lowest order term of the generating function at first 
order 𝑆1 is considered to derive the polarization 
density term in the gyrokinetic Poisson equation. 
While the polarization density appears in the 
gyrokinetic Poisson equation, the polarization drift 
does not appear as the gyro-center drift in the 
standard gyrokinetic model. As a consequence, the 
polarization drift flux is not included in the 
gyro-center flux. The polarization drift flux is 
recovered through the push-forward representation 
of particle flux. A disparity between the two 
representations becomes manifest in deriving the 
polarization flux in the push-forward representation 
of particle flux. 

 
2. Conventional representation 

Particle flux at position r is defined by  

𝚪(𝐫) ≡ �𝑑3𝐱𝑑3𝐯𝑓(𝐱, 𝐯)𝛿3(𝐱 − 𝐫)              (1) 

where f is the particle distribution function. The 
conventional push-forward representation of the 
particle flux is given by [6] 

𝚪(𝐫) = �𝑑6𝐙𝒥�TGC−1𝐯�(𝐙)TGy∗ 𝐹𝛿3��TGC−1𝐱�(𝐙) − 𝐫� 

(2) 
where 𝐙 = (𝐗, 𝑈, 𝜇, 𝜉)  is the gyro-center 
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coordinates, TGy∗ 𝐹 is the pull-back transformation 
of the gyro-center distribution function associated 
with the gyro-center transformation, 𝒥  is the 
Jacobian of the guiding-center transformation, and 
�TGC−1𝐱�(𝐙) ≃ 𝐗 + 𝝆0  and �TGC−1𝐯�(𝐙) ≃ 𝐗̇ + 𝝆̇0 . 
Note that �TGC−1𝐱�(𝐙) does not denote the particle 
position in the gyro-center phase space and hence 
the E×B drift is not included in 𝐗̇. Electrostatic 
fluctuations are included in 

TGy∗ 𝐹 = 𝐹 + {𝑆1, 𝐹} + ⋯                        (3) 
where {,} denote the standard guiding-center 
Poisson brackets [7]. Usually only the lowest order 
term, 𝑆1

(1) = (𝑒 Ω⁄ )∫𝜑� 𝑑𝜉 , is considered in the 
pull-back transformation (3) where 𝜑�  denotes the 
gyro-phase dependent part of the electrostatic 
potential. However, the higher order solution for 𝑆1  

𝑆1
(2) = −

1
Ω
�
𝜕
𝜕𝑡

+ 𝑈𝐛 ∙ 𝛁��𝑆1
(1) 𝑑𝜉       (4) 

is needed to derive the polarization drift flux from 
the conventional representation (2) [8]. Recall that 
an equation determining 𝑆1 is given by [6,9] 

𝜕𝑆1
𝜕𝑡

+ {𝑆1,𝐻0} = 𝜑�                                    (5) 
with the guiding-center Hamiltonian 𝐻0 = 𝜇𝐵 +
𝑚𝑈2 2⁄  and it is solved order by order under the 
low frequency assumption. The time derivative 
term in 𝑆1

(2)  yields the polarization drift flux. 
Belova used the conventional representation to 
derive an explicit representation of the 
perpendicular gyroviscous force from the 
gyrokinetic model [10]. In the derivation, to 
calculate FLR terms, not only 𝑆1

(2) but also 𝑆2, the 
generating function at second order, must be 
considered in the pull-back transformation. 
 
3. Pure push-forward representation 

The other exact representation is given by 

𝚪(𝐫) = �𝑑6𝐙𝒥TGy−1TGC−1𝐯𝐹𝛿3�TGy−1TGC−1𝐱 − 𝐫� (6) 

where TGy−1TGC−1𝐱 ≃ 𝐗 + 𝝆0 + 𝝆1  and TGy−1TGC−1𝐯 ≃
𝐗̇ + 𝝆̇0 + 𝝆̇1  denote the particle position and 
velocity in the gyro-center space, respectively, and 
𝝆1 = {𝐗 + 𝝆0, 𝑆1} is the gyro-center displacement 
vector. This is the pure push-forward representation 
because the pull-back transformation of the 
distribution function does not appear. In the 
representation the effects of electrostatic 
fluctuations enter through 𝝆1 and 𝐗̇ mainly. It is 
noted that 𝐗̇ includes the E×B drift here. Using 
the lowest order solution 𝑆1

(1) and taking the long 
wavelength limit 𝜑� ≃ 𝝆0 ∙ 𝛁𝜑(𝐗), we have 

𝝆1 = −
1
𝐵Ω

𝛁⊥𝜑 +
1
𝑒𝐵

𝐛 × 𝛁𝑆1
(1). 

The polarization drift flux is obtained from 𝝆̇1 
directly. Thus the higher order term 𝑆1

(2) is not 
necessary for the representation (6). 
 
4. Summary 

We have compared two formally different 
push-forward representations of particle flux in the 
standard electrostatic gyrokinetic model by deriving 
the polarization flux from them. The difference 
between the two is the gyro-center transformation 
part which contains 𝑆1 , the scalar function 
generating the gyro-center transformation. A high 
order solution of 𝑆1  including a time derivative 
term is needed to obtain the polarization flux if we 
use the conventional one in which the gyro-center 
part appears as the pull-back transformation of the 
distribution function. In contrast, the lowest order 
solution is sufficient for the other pure 
push-forward representation in which the time 
derivative of the gyro-center displacement vector 
gives the polarization flux directly. Furthermore, 
the particle flux representation with FLR terms that 
Belova calculated using the conventional 
representation and high order solutions of 
generating functions can be recovered using the 
other one with the lowest order solution only [11]. 
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