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To observe behaviors of collisionless shocks, dependence of perpendicular magnetic-fields on hy-
personic plasma flow generated by a taper-cone-shaped plasma focus device has been evaluated.
The velocity of hypersonic plasma flow was observed with a streak camera. The results shows that
the perpendicular magnetic-field gradient affects the velocity of hypersonic plasma flow. It also
indicates that the acceleration ratio in the perpendicular magnetic-field gradient depends on the
plasma beta of hypersonic plasma flow.

1. Introduction
Collisionless shock phenomena, in which are

one of the astrophysical phenomena, have un-
clear mechanism such as energy dissipation pro-
cess and generation of highly energetic particles.
Hypothesis on origin of highly energetic particles
are generated by low Mach number flow with the
weak perpendicular and/or parallel magnetic-
field from numerical simulations [1]. To generate
the collisionless shock in the laboratory scale ex-
periments, Drake [2] has considered the required
conditions, which depend on the magnetic flux
density and the hypersonic plasma flow. The
pulsed-power discharge using taper-cone-shaped
plasma focus device [3] is easy to generate the
hypersonic plasma flow.

In this study, to observe behaviors of col-
lisionless shocks, dependence of perpendicular
magnetic-fields on hypersonic plasma flow gen-
erated by a taper-cone-shaped plasma focus de-
vice has been evaluated. Compared to the
magnetic-field gradient, we observed the accel-
eration/deceleration of hypersonic plasma flow.

2. Experimental Setup
To obtain the one-dimensional shock wave, we

use the taper-cone-shaped plasma focus device
[3]. Generated plasma was focused and stagnated
at the center of cone electrode. The stagnated
plasmas were guided by the acrylic tube as a one-
dimensional behavior. The velocity of hypersonic
plasma flow was observed with a streak camera.
The Mach number M , which the sound velocity
vHe of helium at room temperature T ∼ 300K
standardized by the shock velocity, is estimated
to be M = 10 ∼ 20.
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Fig. 1 Perpendicular magnetic-field distribution in
the acrylic tube.
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Fig. 2 Streak images of hypersonic plasma flow in the perpendicular magnetic-field. Labels (a)-(c) correspond
to the perpendicular magnetic-field distribution in the acrylic tube as shown in Fig. 1

To evaluate an effect of magnetic field on
the hypersonic plasma flow, permanent magnets
were set on the acrylic tube. The magnetic-flux
density distribution of permanent magnets are
shown in Fig. 1.

3. Experimental Results and Discussions
Figure 2 shows streak images of the hypersonic

plasma flow in the perpendicular magnetic-field
with fixed plasma beta. As shown in Fig. 2, we
can see a shock front from the visible emission.
In the case of localized magnetic-field as shown
in Fig. 2(a), the velocity of hypersonic plasma
flow decreases from 4.2 km/s to 3.2 km/s. In the
case of uniform magnetic-field as shown in Fig.
2(b), the velocity of hypersonic plasma flow is
not change in the perpendicular magnetic-field.
On the other hand, in the case of perpendicular
magnetic-field gradient as shown in Fig. 2(c), the
velocity of hypersonic plasma flow increases from
4.2 km/s to 5.2 km/s. The results shows that the
perpendicular magnetic-field gradient affects the
velocity of hypersonic plasma flow.

We have also demonstrated the different
plasma beta with the perpendicular magnetic-
field as shown in Fig. 1 (c). The results indicate
that the acceleration ratio in the perpendicular
magnetic-field gradient depends on the plasma
beta of hypersonic plasma flow. These results
are suggested that the length of perpendicular
magnetic-field gradient contributes the acceler-

ation/deceleration degree of hypersonic plasma
flow.

4. Conclusions

To observe behaviors of collisionless shocks,
dependence of perpendicular magnetic-fields on
hypersonic plasma flow generated by a taper-
cone-shaped plasma focus device has been eval-
uated. The velocity of hypersonic plasma flow
was observed with a streak camera. The results
shows that the perpendicular magnetic-field gra-
dient affects the velocity of hypersonic plasma
flow. It also indicates that the acceleration ratio
in the perpendicular magnetic-field gradient de-
pends on the plasma beta of hypersonic plasma
flow.

To understand the hypersonic plasma flow with
the magnetic field, we should evaluate the time-
evolution of the magnetization of plasma flow
and its plasma parameters.
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