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Plasma simulations with PIC need various implementation techniques to run them efficiently on modern 
supercomputers having up to many hundreds thousands of CPU cores and occasionally with accelerators 
such as GPGPU. Unfortunately, these techniques often architecture dependent and thus your codes must be 
revised, drastically sometimes, each time you have a new supercomputer. Our research on local view ker-
nels aims at making you free from these tough and repetitive efforts providing a framework with which you 
may concentrate on a particle and a grid point describing what-part of your simulation as a set of local view 
kernels, while how-part representing the implementation techniques are automatically attached to the loops 
containing the kernels. 

 
 
1. Introduction Third and finally, the efficiency and effectiveness 

of these methods often depends on the architecture 
of your supercomputer. This means that when you 
or your supercomputer center purchases a new sys-
tem, your code might be modified to cope with the 
architectural change. This modification can be not 
only adding new techniques but also eliminating old 
ones as you should have done for vector-oriented 
code whose structure brings poor performance in 
executions on scalar parallel systems. Furthermore, 
a part for still-applicable techniques could have to 
be modified due to the change of architectural pa-
rameters such as cache size and memory/network 
bandwidth. 

In plasma simulation with PIC method, a huge 
number of charged particles interact with electro-
magnetic fields mapped onto a large number of 
grid points, governed by Maxwell’s equations and 
the Lorentz force law. These hugeness and large-
ness of the simulation essentially require highly 
efficient implementations especially exploiting 
large-scale parallelism in modern supercomputers. 
Therefore, many researches have been conducted 
for efficient parallelization including our OhHelp 
[1] being the first scalable domain-decomposed 
parallelization with dynamic load balancing. 

However, such a method is not always easily ap-
plicable to your simulation nor sufficiently im-
proves its performance on a given supercomputer 
due to the following reasons. First, even with a 
well-designed library implementing the method, 
your code should be modified somewhat for the 
application. For example, though OhHelp provides 
highly sophisticated mechanism not only for load 
balancing but also inter-subdomain communica-
tions, you have to add ten or so library function 
(procedure) calls and reconfigure the fundamental 
time-evolutional loop in the form OhHelp requires. 

Our research aims at eliminating the necessity of 
these modifications of your code by making it de-
scribed as the set of local view kernels acting on a 
small set of data elements, i.e., such as a particle 
and/or electromagnetic field vectors defined on a 
grid point and its neighbors. The kernels for what- 
type descriptions are then assembled together with 
how-type library calls and assembling methods such 
as cache-aware loop configurations. 

 
2. Local View Kernels 

Figure 1 shows a typical code structure of the 
main time-evolution loop of fundamental PIC simu-
lators. The loop has calls of four kernel functions  
each of which has a loop (or a nest of loops) to scan 
all particles or all grid points on which electromag-
netic field vectors are defined. That is, the first two 
scans particles to accelerate particles by Lorentz 
force (particle_push()) and then to scatter cur-
rent caused by the movements of particles (cur-
rent_scatter()), while the other two solve the 

Second, OhHelp takes care of parallel efficiency 
but does not concern about sequential performance. 
Therefore, it is perfectly up to you to make your 
code, e.g., cache-aware for efficient execution on 
your scalar MPP or cluster with further modifica-
tion. Note that even if OhHelp and/or other librar-
ies/ tools provide such a means for performance 
improvement, it is still up to you to modify your 
code so that the means works on the code together 
with OhHelped parallelization. 

 



progress of electric field vectors (field_solve_ 
e()) and magnetic ones (field_solve_b()). 

The loop above and four functions are simple but 
you have to make various modifications on it for 
efficient execution on your parallel supercomputer. 
For example, in order apply OhHelp to the code, 
you must duplicate four kernel function calls for the 
secondary subdomain and particles in it which a 
MPI process acts on for load balancing in addition 
to its primary ones, add an all-reduce communica-
tion to accumulate the current resulted from all par-
ticles in a subdomain, add two neighboring com-
munications to exchange current and electromag-
netic field vectors, and add a call of OhHelp load 
balancer to transfer particles crossing subdomain 
boundaries possibly with dynamic load rebalancing, 
to have the code shown in Fig. 2. 

The code in Fig.2, however, is not very efficient 
in terms of its sequential performance, because it 
scans a huge one-dimensional array of particles 
thrice and then does it for a large three-dimensional 
array of electromagnetic field vectors thrice too re-
sulting in a poor temporal locality in memory ac-
cesses. Therefore, you will have to modify the code 
further so that, for example, multiple scanning 
loops are fused and/or the spatial loops are tiled. 

In order to avoid the modifications above which 
are often complicated and involve techniques them-
selves applicable to many PIC codes, we introduced 
local view kernels acting on each particle or each 
electromagnetic field vector as shown in Fig. 3. The 
code description is based on the domain-specific 
language Physis[3] developed for GPGPU-enabled 
coding for stencil computing but is extended to 

make it applicable to wider-range of simulation 
codes. 

As shown in the figure, the Physis-based code 
has a structure similar to that shown in Fig. 1, but 
the kernel functions are for a particle or a vector. 
Therefore, the construction of loops scanning parti-
cles and vectors are up to our code translator which 
is also responsible not only of domain-decomposed 
MPI parallelization with OhHelp but also of  
thread-level parallelization with OpenMP, loop fu-
sion and tiling for efficient memory access with for 
good temporal locality, a sophisticated inter-process 
communication for the overlapping computation 
and communication with improvement of spatial 
locality in neighboring communication, and so on. 

For example, our preliminary investigation of the 
code automatically translated from that with local 
view kernels does not only show performance as 
good as hand-made OhHelped code but also exerts 
40% better performance with threading and loop 
fusion. These implementation techniques are made 
applicable because the Physis-based description 
gives a free-hand to our translator in the construc-
tion of loops and the translator is domain-specific 
and thus have knowledge specific to PIC codes 
such as the hidden dependency between arrays. 
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for (t=0; t<T; t++) { 
  StencilMap(particle_push(...)); 
  StencilMap(current_scatter(...));
  StencilMap(field_solve_e(...)); 
  StencilMap(filed_solve_b(...)); 
} 
stencil void particle_push( 
  Part p, whole Vec b, whole Vec e){
  double a[3]; 
  lorentz(p,b,e,a); 
  p[0].p[X]+=(p[0].v[X]+=a[X]); 
  p[0].p[Y]+=(p[0].v[Y]+=a[Y]); 
  p[0].p[Z]+=(p[0].v[Z]+=a[Z]); 
} 

Fig.3. Main loop with local view kernels 

for (t=0; t<T; t++) { 
  particle_push(...); 
  if(sec) particle_push(...); 
  current_scatter(...); 
  if(sec) current_scatter(...); 
  if(sec) oh_allreduce_field(...); 
  oh_exchange_borders(...); 
  field_solve_e(...); 
  filed_solve_b(...); 
  oh_exchange_borders(...); 
  oh_transbound(...); 
} 

Fig.2. Modified main loop 

for (t=0; t<T; t++) { 
  particle_push(...); 
  current_scatter(...); 
  field_solve_e(...); 
  filed_solve_b(...); 
} 

Fig.1. Typical main loop of PIC code 

 


