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Diffusion coefficient implicitly included in the point vortex solution for the two-dimensional inviscid Euler 
equation is examined analytically. This diffusive effect arises from a discrete distribution of the vorticity.
The obtained diffusion coefficient includes a position correlation in addition to a time correlation. It can be 
regarded as an extension of the well-known Green-Kubo formula.

1. Introduction
 To explain a large scale structure forma-
tion, for example, great red spot on Jupiter, eddy at 
Naruto, and typhoon, Onsager introduced a concept, 
"negative temperature" for the two-dimensional (2D) 
point vortex system [1]. If absolute temperature of 
a system is negative, there is more possible state at 
higher energy than lower energy as the probability is  
proportional to exp(-bH)) (H: system energy).
 Much research effort has been devoted to 
understand the negative temperature state in the 
context of 2D turbulence [2-6]. One remarkable re-
sult may be an derivation of a mean field equation 
for the point vortex system. This equation is called 
sinh-Poisson equation [7]. Later, another member of 
Montgomery group reported that a time asymptotic 
distribution of 2D Navier-Stokes system at high 
Reynolds number reached a state predicted by the 
sinh-Poisson equation. This implies that an equilib-
rium state for the viscous Navier-Stokes system is 
similar to one for the inviscid point vortex system 
and that the point vortex system may have a diffu-
sive effect.
 On the other hand, in the review article of 
the point vortex method, Leonard said that "It now 
appears that using an increased number of point vor-
tices of decreased strength will not yield a converged 
solution. ... Ironically, best results with the point vor-
tex method often are achieved by using only a few 

vortices with a diffusive time integration scheme.[8]" 
This statement also implies a diffusive effect implic-
itly included in the point vortex system.
From these backgrounds, we have started an analyti-
cal estimate of the discussion coefficient for the 2D 
point vortex system.
 The organization of this paper is as follows. 
First, we introduce the point vortex system as a mi-
croscopic solution. Second, the main result of the 
diffusion coefficient is presented. At last, we discuss 
the result.

2. Euler Equation and Klimontovich Equation
 The 2D Euler equation (vorticity equation)

 ∂
∂
+ ⋅∇ =

w
wz
zt

u 0    (1)

has an discrete solution:

 w dz i i
i

t t( , ) ( )r r r= −( )∑W   (2)

where u(r,t) and wz(r,t) are the velocity field and the 
vorticity field. The solution (2) is called the point 
vortex solution. A position and strength of the i-th 
point vortex is given by ri = ri (xi , yi) and Wi. The 
value of Wi is either W0 or -W0 where W0 is a posi-
tive constant. The vorticity field is discretized by the 
Dirac delta function d(r - ri).
 Usually, fluid equation that describes macro-
scopic phenomena has a macroscopic smooth solu-
tion. However, Eq. (2) is not a smooth solution. Thus 
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we consider the solution (2) is not a solution for 
the macroscopic Euler equation but a solution for a 
microscopic Euler equation whose form is identical 
with Eq. (1). To distinguish the microscopic equation 
from the macroscopic equation, we introduce a nota-
tion "hat". A variable with the hat means it micro-
scopic.

 ∂
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ˆ
ˆ ˆ
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wz
zt

u 0  (3)

 Similar situation can be found in plasma 
physics. Time evolution of an exact phase space den-
sity

  (̂ , , ) ( )( ) ( ( ))f t t ti i
i

r v r r v v= − −∑ d d                (4)

is given by the Klimontovich(-Dupree) equation
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Taking an ensemble average of Eq. (5) yields a ki-
netic equation for the averaged phase space density, 
for example, Fokker-Planck equation
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and in the inviscid limit, Vlasov equation
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Note that the Vlasov equation is the inviscid equa-
tion in approximation.
 We consider that the microscopic Euler 
equation that has the point vortex solution corre-
sponds to the Klimontovich equation. The macro-
scopic, inviscid Euler equation corresponds to the 
Vlasov equation. There is no corresponding equation 
to the Fokker-Planck equation. Thus we derive it 
analytically using the Klimontovich formalism [9].

3. Diffusion Coefficient for the Point Vortex Sys-
tem

 The starting equation is the microscopic Eu-
ler equation (3). We assume each microscopic vari-
able consists of an averaged macroscopic part and a 
fluctuation.
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Substituting Eq. (8) into Eq. (3) and averaging it, we 

obtain the following macroscopic Euler equation in-
cluding a diffusion term in the right hand side:
∂
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To evaluate Eq. (9), we introduce an linearized equa-
tion for the fluctuation.
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This equation can be integrated: 
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The resulting formula is given by
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4. Discussion
 The resulting equation is an extension of 
the well-known Green-Kubo formula. In our result 
position correlation due to the macroscopic flow u 
is included in addition to time correlation. It may be 
possible to evaluate the diffusion term numerically.
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