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A new solution method for longstanding problems
of resistive MHD stability analysis

抵抗性MHD安定性解析の未解決問題に対する新しい近似解法
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We have developed a new solution method for longstanding problems of resistive magnetohydrody-
namics (MHD) stability analysis. Since this is a conference proceeding of an invited talk, the main
body of the study has been published elsewhere. In this proceeding, we point out the difficulties
of the classical method based on the matched asymptotic expansion, and briefly explain notion of
our new method.

1. Introduction

One of the important pieces in nuclear fusion
development is magnetohydrodynamics (MHD)
stability analysis of confined plasmas. Finite
plasma resistivity introduces several resistive
MHD instabilities such as tearing modes. Since
large-scale magnetic islands degrade the plasma
confinement significantly and even cause disrup-
tion, control and suppression of the islands are
one of the urgent issues. To understand physics
of them, accurate calculation of the resistive
MHD stability is indispensable.

A standard method of the stability analysis
has been the asymptotic matching method[1,2].
The method relies on assumptions such as small-
ness of the resistivity and the slow dynamics.
Then the resistivity and the inertia terms can
be neglected in most of the region in the plasma,
that we call outer region. There we solve the
inertia-less, ideal MHD equation or the so-called
Newcomb equation[3]. In the outer region, the
dominant effect is magnetic tension. The mag-
netic tension however vanishes at a resonant sur-
face inside the plasma if it exists, and thus re-
sistivity and the inertia need to be retained in a
thin layer around the resonant surface, which we
call an inner layer. Since the inner layer is thin,
we can simplify the governing equation. To focus
on the inside of the thin layer and on the slow
dynamics, we may re-scale the radial coordinate
and the frequency by using resistivity as a small
parameter, leading to the inner equation.

The resistivity term has the highest-order spa-

cial derivative; it is singular perturbation. Since
that term is dropped in the outer region, the
number of independent solutions becomes two,
instead of four in the inner layer. Two of the four
independent solutions in the inner layer have the
same asymptotic forms which can be matched
onto the outer solution. The two solutions can be
obtained as the Frobenius series around the reso-
nant surface, and are called small and large solu-
tions. The ratio of the small solution to the large
solution, called matching data, plays crucial role
in the asymptotic matching method. The match-
ing then gives us the dispersion relation.

The asymptotic matching method is well es-
tablished mathematically. However, it has some
difficulties in practice. (i) Although the resis-
tivity and the inertia are neglected in the outer
region, they can be important there if the plasma
is close to marginal stability against ideal MHD.
A plasma close to its ideal MHD stability limit
may be preferable to improve efficiency of a fu-
sion reactor. Such a situation may be simulated
by a cylindrical plasma with q = 1 surface inside
the plasma, where q is the safety factor. The
m/n = 1/1 internal kink mode is then marginally
stable against ideal MHD, where m and n are
the poloidal and toroidal mode numbers, respec-
tively. (ii) The method cannot be applied in the
first place if the resonant surface becomes an ir-
regular singular point of the Newcomb equation.
An important type of discharge in fusion devel-
opment has non-monotonic q profile, and the
minimum-q position can be such irregular sin-



gularity. (iii) Accurate numerical computation
of the matching data is still difficult in toroidal
plasmas even though some sophisticated theory
have been developed[4,5]. (iv) In the plasma
close to marginal stability against ideal MHD,
the matching data diverges. Although a numer-
ical scheme to calculate huge matching data was
developed[6], it is reported that the accuracy of
the matching data strongly depend on the local
equilibrium accuracy and grid arrangement[7].
(v) Careful treatment is required in solving the
inner equation numerically since the radial coor-
dinate is re-scaled into unbounded space[8].

We pointed out these difficulties, and resolved
them by our new matching method in Ref. [9,10].
The key ingredients of the new method are an
utilization of an inner region with a finite width,
and an ordering scheme for the outer region. We
will briefly explain notion of the new method be-
low. Readers interested in details of the formu-
lation and applications may refer to Ref. [9,10].

2. Notion of new matching method
In our new method, we adopt a finite-width

inner region, instead of infinitely thin inner layer.
Neither the radial coordinate nor the frequency
are re-scaled via small resistivity. The solutions
in the inner and outer regions are then matched
directly, not asymptotically, by imposing conti-
nuity of perturbed magnetic field at the bound-
aries, which are reasonably apart from the reso-
nant surface. Since the boundaries or the match-
ing points are apart from the singularity, we can
fully avoid the difficulties in the numerical com-
putation. Accurate computation of the matching
data, including the divergent case, and the care-
ful treatment of the unbounded space are unnec-
essary. Furthermore, our method is applicable to
the irregular singularity case, since the method
does not rely on the Frobenius series solution.

Note that the finite-width inner region was
originally introduced for ideal MHD modes[11],
and extended to resistive wall modes in rotat-
ing cylindrical plasmas[12]. The important dif-
ference from these studies is that the resistiv-
ity term increases the order of spacial derivative.
We then need to select two of the four indepen-
dent solutions in the inner region, that can match
onto the outer solution. A natural idea for the
selection may be to impose smooth disappear-
ance of parallel electric field E‖ as approaching
the matching points from the inner side[9]. The
application results were mostly satisfactory.

What was exceptional is the m/n = 1/1 inter-
nal kink mode. This mode is marginally stable
against ideal MHD. In the q < 1 region, which
is treated as ideal MHD region in the asymp-
totic matching method, E‖ does not disappear
smoothly. The remaining E‖ indicate the rela-
tive importance of the resistivity and the inertia.
Thus we have developed an ordering scheme for
the outer region to include those effects perturba-
tively. The ordering is similar to the one adopted
for the inner layer in the asymptotic matching
method, but is different in the estimation of ra-
dial derivative. Since the boundary of the outer
region is reasonably far from the singularity, we
can assume that the radial derivative is of order
unity. The ordering scheme then gives us a hi-
erarchy of generalized Newcomb equations. The
lowest- and the first-order equations agree with
the conventional one, and the second-order equa-
tion includes the resistivity and the inertia as in-
homogeneous terms. Note that the homogeneous
part has the same differential operator at each
order. By including the second-order correction,
we have achieved sufficiently accurate stability
calculations also for the concerned m/n = 1/1
internal kink modes.
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