
 

Gyrokinetic Analysis of Phase-Space Interactions 
in Two-Dimensional Electrostatic Turbulence 

２次元静電乱流の位相空間相互作用に関するジャイロ運動論解析	 
 

T. Tatsuno*1,*2, G. G. Plunk*2 

龍野	 智哉*1,*2,	 G. G. Plunk*2 

 
*1Department of Communication Engineering and Informatics 

The University of Electro-Communications 
1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan 

電気通信大学	 情報・通信工学科	 〒182-8585 東京都調布市調布が丘1-5-1 
 

*2Institute for Research in Electronics and Applied Physics, 
The University of Maryland, College Park, Maryland 20742, USA 

 
Various local and nonlocal interactions may take place in the phase-space turbulence of magnetized weakly 
collisional plasmas.  Using electrostatic gyrokinetic simulations, it is shown that those interactions may be 
characterized by the ratio between two collisionless invariants in two dimensions.  Theoretically such a 
variety of interactions may be explained by generalizing the argument of Fjørtoft [Tellus 5 (1953) 
225].  Practical application might include the control of large-scale fluctuations by means of the excita-
tion of a particular small-scale perturbation due to the nonlocal interactions. 

 
 
1. Introduction 

Plasmas in fusion device, solar wind and others 
are usually collisionless or at most weakly colli-
sional.  In such weakly collisional plasmas, tur-
bulence proceeds in phase space [1-8].  In mag-
netized plasmas, free streaming of particles par-
allel to the ambient field line brings about linear 
phase mixing, which ends up with the collisional 
dissipation of entropy through creation of 
small-scale structures in parallel velocity [2]. 

On the other hand, phase mixing perpendicular 
to the ambient field proceeds nonlinearly due to 
the small-scale fluctuations of electrostatic po-
tential [3].  When gyrokinetic (GK) theory is 
applied, the gyro-averaged potential differs 
among particles with different orbits, thus intro-
ducing their decorrelation.  In this case the ve-
locity and position spaces are strongly coupled, 
and as the turbulence proceeds, the entropy cas-
cades in the velocity space as well as in the posi-
tion space [4-8]. 

In two dimensions (2D) there is another colli-
sionless invariant in addition to the entropy, 
which is associated with the electrostatic poten-
tial [6,8,9].  As the 2D Navier-Stokes (NS) tur-
bulence exhibits a dual cascade [10,11], 2D GK 
also exhibits a dual cascade, where the difference 
from the NS turbulence is that both velocity and 
position spaces (or a phase space) need to be 
taken into account [9]. 

In this presentation, we show that there are 
various routes of interactions in the phase-space 

turbulence [9].  The possibility of the nonlocal 
interactions may be a potential problem in 
constructing a renormalized theory of turbulence.  
We first introduce our model in Sec. 2 and 
present the numerical results in Sec. 3. 
 
2. Model 

We use the normalized 2D electrostatic GK 
equation 

€ 

∂g
∂t

+ φ R ,g{ } = C R ,         (1)	 

where 

€ 

g  is the gyro-average of the perturbed dis-
tribution function, 

€ 

φ  is the electrostatic potential, 

€ 

• R  is the gyro-average with the gyro-center posi-
tion 

€ 

R fixed, 

€ 

a,b{ } = ˆ z × ∇a⋅ ∇b  is the Poisson 
bracket, and 

€ 

C  is the collision operator.  The 
electrostatic potential 

€ 

φ  is obtained via the 
quasi-neutrality condition 

€ 

g∫ r
dv = φ − φ R r

,        (2) 

where 

€ 

• r  is the gyro-average with the particle 
position 

€ 

r  fixed.  Here we assumed zero re-
sponse electrons where electrons make no contribu-
tion to the potential.  This system of equations 
possesses two collisionless invariants 

€ 

W =
1
2V

g2dRdv∫∫ , 

€ 

E =
1
2V

φ 2 + φ φ R∫ r
dr , 

where 

€ 

W  tends to cascade forward and 

€ 

E  does 
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inversely.  Equations (1)-(2) are numerically 
solved using an open-source, MPI-parallelized For-
tran 95 code AstroGK [12]. 
 
3. Results 

In order to characterize the velocity space struc-
ture we introduce the Hankel transform in the per-
pendicular velocity 

€ 

ˆ g ( p) = J0(pv⊥)g(v⊥)v⊥dv⊥∫ , 
where 

€ 

J0 is the Bessel function.  Position space 
structure may be characterized by the wave number 

€ 

k  via the standard Fourier transform. 
Figure 1 shows the spectral density distribution 

€ 

W (k, p) = kp ˆ g (k, p) 2
 for three runs of the decay-

ing-turbulence simulations made with varying ini-
tial ratio between 

€ 

W  and 

€ 

E  (

€ 

κ =W /E ).  
While 

€ 

W  corresponds to the spectral density over 
the whole 

€ 

(k, p)  plane, 

€ 

E  is concentrated only 
on the diagonal (

€ 

k = p) as only those components 
contribute the electrostatic potential.  Thus small 

€ 

κ  corresponds to a state where spectral density is 
concentrated along the diagonal, while large 

€ 

κ  
corresponds to the other. 

In the middle case [moderate 

€ 

κ ; Fig. 1(c) and 
(d)], small-scale initial condition exhibits a typical 
dual cascade where 

€ 

W  cascades forward in a dif-
fuse way and 

€ 

E  cascades inversely along the 
diagonal.  When 

€ 

κ /k0
2  is smaller than unity [Fig. 

1(a) and (b)], where 

€ 

k0  is the wave number of the 
initial condition, the inverse cascade becomes non-
local, which may be explained by the Kel-
vin-Helmholtz instability of the initial condition.  
When 

€ 

κ /k0
2  is much larger than unity [Fig. 1(e) 

and (f)], on the other hand, the large-scale diagonal 
component is transferred to small scale directly as 
the spectral diffusion of 

€ 

W  reaches the diagonal.  
This nonlocal transfer of 

€ 

E  arises due to its con-
servation property during the evolution.  Interest-
ingly, in Fig. 1(f), the large-scale 

€ 

E  is not suffi-
cient to support the spectral diffusion of 

€ 

W  and 
thus the spectral density contains a dip along the 
diagonal [Fig. 1(f)]. 

In the presentation, we will express our results in 
more detail including the theoretical explanation in 
conjunction with the Fjørtoft’s theory [11]. 
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Figure 1: Example spectral distributions.  Diagonal 

(

€ 

k = p) is indicated by the dotted line. 
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