
Hierarchical Domain Decompositions for Particle-in-Cell Codes

Viktor K. Decyk and Tajendra V. Singh

Institute for Digital Research and Education
University of California, Los Angeles
Los Angeles, California, 90095, USA

The computational nodes of future supercomputers are becoming more and more powerful as the
number of cores increases. To test the idea that such a hierarchy of computers might best be
programmed with a hierarchy of domain decompositions, we have implemented a two level domain
decomposition using OpenMP and MPI. Results show that for Particle-in-Cell codes with global field
solves, such a hierarchy may work better than MPI alone.

1. Introduction
 The most successful approach for parallelizing
Particle-in-Cell (PIC) codes on large parallel
computers is domain decomposition with
Message-Passing (MPI). It is becoming evident
that each node on a traditional parallel computer
is becoming more powerful, with an increasing
number of cores that share memory. In fact, the
future computer is tending toward a hierarchy of
parallel computers clustered together. Is a
hierarchy of domain decompositions a useful
approach to programming such systems?
 Domain decomposition solves one important
difficulty that arises in shared memory computers:
the problem of data collisions, when two threads
or processors attempt to update the same memory
location simultaneously. In PIC codes this occurs
primarily during the deposit step. The traditional
approach to avoiding such problems on shared
memory computers is to lock memory in some
fashion. Such locks can be very slow, however,
and few computer languages have native support
for memory locks. On distributed memory
computers, guard cells or ghost cells are used to
avoid data collisions, and this technique can be
used on shared memory computers as well, at the
cost of using extra memory. Domain
decomposition on shared memory machines can
also improve memory performance, because it
leads to better data locality, that is, the data
needed by each thread is stored compactly
together.

2. MPI/OpenMP domain decompositions
 To evaluate new algorithms, we have
implemented a number of 2D parallel skeleton
PIC codes as part of the UPIC Framework [1]. In
these codes, the physics procedures and the

communication procedures which manage the
data movement are separated. This is sometimes
called Bulk Synchronous Programming (BSP).
The physics procedures work only on local data.
There are only 4 communications procedures that
move data between domains: one to add/copy
guard cells, another to transpose data, a particle
manager to move particles between domains, and
a field manager to move field data between
domains.
 To test this idea of hierarchical domain
decompositions, we have implemented a two level
domain hierarchy for PIC Codes. Each node uses
a local domain decomposition implemented in
OpenMP. These nested domains are then
connected with each other using MPI. The
physics procedures are written in OpenMP. The 4
communication procedures are written in both
MPI and OpenMP. MPI part uses traditional
message-passing to move data between local
domain decompositions, and each node must be
aware of what data it is sending and receiving.
The OpenMP part uses simpler algorithms to
move data within its local domain decomposition
because it can safely read another thread’s data
directly. When data movement involves both MPI
and OpenMP, the data is moved in stages.

3. Performance Results
 Results of a 2D PIC code shown in Figure 1
indicate that on a single shared memory node,
MPI is slightly faster than OpenMP.

25C03

Figure 1. PIC Performance with MPI and mixed MPI/
OpenMP on one shared memory node

 On multiple shared memory nodes, there is
some additional overhead with using nested
domain decompositions. However, if there is
substantial global communications, the
hierarchical domain decomposit ion can
outperform MPI alone because the global
communications are staged. The most dramatic
improvement came from the transpose used by the
FFT. This improved the performance of a 2D
parallel FFT by nearly a factor of three. The
overall performance of a 2D electrostatic spectral
PIC code, shown in Figure 2, improved by nearly
a factor of 4.
 We are currently applying this approach to a
cluster of GPUs. Each GPU will have its own
domain decomposition[2], and these will be
connected by MPI.

Acknowledgements

This work is supported by the USDOE SciDAC
program and UCLA IDRE.

Figure 2. PIC Performance with MPI and mixed MPI/
OpenMP on multiple shared memory nodes

References

[1] V. K. Decyk, "UPIC: A framework for massively
parallel particle-in-cell codes," Computer
Phys. Comm. 177, 95 (2007).

[2] Viktor K. Decyk and Tajendra V. Singh ,"Adaptable
Particle-in-Cell algorithms for graphical
processsing units," Computer Physics Communications
182, 641 (2011)

25C03

