
Analysis of Hybrid Kinetic-MHD Simulations

Charlson C. Kim
University of Washington, Seattle, WA, USA

Dylan P. Brennan
University of Tulsa, Tulsa, OK, USA

We present novel phase space diagnostics of δf kinetic-MHD[1] linear simulation study of energetic
particle effects on the n = 1 mode in a “hybrid” DIII-D discharge. These discharges are limited to
moderate βN ∼ 2.5 by the m/n = 2/1 instability. A past study has shown[2] that energetic particles
significantly change the stability map in (qmin,βN ) parameter space from the MHD-only result and
may help in explaining the experimental results. Unstable modes are driven by energetic particles far
into the MHD stable region in (qmin,βN ) space. Three different unstable regions are identified. At
low qmin ∼ 1 the drive is associated with the fishbone mode, while the higher qmin & 1.12 the drive
is associated with the BAE mode. We apply these new phase space diagnostics to examples from
these three regions. These new diagnostics complement conventional diagnostics that are commonly
used and will help in identification and analysis of the mode/particle interactions.

I. INTRODUCTION

In previous analysis[2], we computed the linear stabil-
ity of the n = 1 mode of a DIII-D “hybrid” discharge[3]
with a low central shear and qmin & 1. Using an exper-
imental equilibrium reconstruction, we generated a se-
ries of neighboring equilibria varying qmin and βN . For
each of these equilibria, we ran linear NIMROD simu-
lations with and without energetic particles and com-
puted the growth rates and real frequencies of the n = 1
mode, with Lundquist number S = τR/τA ∼ 107 − 108,
fixed Prandtl number Pr = µ0ν/η = 100, and fixed
βfrac = βh/β = 0.16 representative of DIII-D conditions.
A stability map in (qmin, βN ) space was constructed and
revealed a significant change due to energetic particle ef-
fects. The energetic particle stability map naturally di-
vides into three distinct regions characterized by the real
frequency of the n = 1 mode. We present applications of
novel phase space diagnostics to analyze example eigen-
modes from these three region.

These diagnostics examine the evolution of δf in
(v‖, v⊥) space and convolution of the terms in the δf [4]
evolution equation. We also examine the contribu-
tions from passing and trapped subpopulations and show
that both subpopulations contribute significantly to en-
ergetic particle-MHD mode evolution. In particular, this
phase space analysis reveals that the region near the
trapped/passing boundary is a key region of activity.

The intent of these new δf PIC phase space diagnos-
tics is to help elucidate the physics of energetic particle
interactions with MHD modes. The analysis is in its de-
velopmental stage and primarily phenomenological, but
continued development and refinement will mature these
tools to quantitative and potentially predictive measure-
ments.
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FIG. 1: Growth rates and real frequencies of the n = 1 mode
vs. qmin for set of βN values. Also shown are MHD-only
results.

II. ENERGETIC PARTICLE EFFECTS

Fig. 1 summarizes several scans in qmin at different
fixed pressures and plot growth rate and frequency vs.
qmin for a series of fixed βN values. For comparison,
the MHD-only growth rates are also plotted. The real
frequency response shows a natural division into three
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distinct regions. The MHD-only simulations show stabil-
ity above qmin ≃ 1.07. The energetic particle inclusive
growth rates show that in the lower qmin region, ener-
getic particles reduce the growth rate. This region also
shows a linear dependence of the real frequency on qmin.
Above qmin ≃ 1.12, the real frequency shows a weak de-
pendence and then makes an abrupt transition to lower,
near constant frequency.
The energetic particle interaction with the mode can

be divided into three regions in (qmin,βN ) space, char-
acterized by the frequency response (ωτA). We examine
example eigenmodes from these three regions in Figs 2,3.
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FIG. 2: The flux normal magnetic field and velocity,
fluid pressure, particle perpendicular pressure and particle
anisotropic pressure eigenfunctions for qmin of a) 0.95, b) 1.05,
c) 1.21 and d) 1.36.

For the first region, [Fig 2(b)(qmin = 1.05,βN =
3.0)]the perturbed pressure retains a non-resonantm = 1
structure peaked near the magnetic axis, while the Br

perturbation is dominantly m = 2. The next two regions

are in the stable regions of the MHD-only stability map.
These low growth rate (compared to ideal MHD), high
frequency (compared to growth rate) modes are predom-
inantly energetic particle driven Alfven modes. For the
(qmin = 1.21,βN = 2.6) case [Fig 2(c)], the 1/1 struc-
ture near the axis persists. At the higher qmin case
[(qmin = 1.36,βN = 2.3)Fig 2(d)], the eigenmode extends
out to the q = 2 rational surface with m = 2 structure,
and no m = 1 non-resonant structure appears near the
axis.
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FIG. 3: The real part of the n = 1“velocity-space” eigenmode
for three cases with qmin of a) 1.05, b) 1.21 and c) 1.36.

We consider an orthogonal view of the n=1 mode in
“velocity-space” of the particles, i.e.

δf(v‖, v⊥)n=1 =

∫ r2

r1

δf(z)d3x|n=1. (1)

These are shown in Fig. 3 for the same cases as Fig.
2 above. We also compare the n = 1 “velocity-space”
eigenmode integrated over subvolumes, from the axis
to the qmin minor radius(r1 = 0, r2 = r(qmin)) and
from the qmin minor radius to the outer boundary(r1 =
r(qmin), r2 = a). Each “velocity-space” eigenmodes is
distinct.

We will detail this orthogonal view and its relation to
the configuration space eigenmode and present accompa-
nying diagnostics of the phase space evolution of these
energetic particle, kinetic-MHD simulations.
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