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We developed a numerical scheme for solving a set of Relativistic Resistive Radiation 
Magnetohydrodynamics (R3MHD) equations, which ensures a conservation of total energy and momentum 
of the matter, magnetic field and radiation. The electric resistivity is assumed to be istropic in the 
comoving frame. The radiation field is described by the 0th and 1st moment equations of the radiation 
transfer equation. The hyperbolic terms, whose timescale is characterized by the light crossing time in the 
relativistic plasma,  are explicitly integrated using approximate Rieman solvers. Source terms, describing a 
magnetic diffusion and an exchange of energy and momentum between the plasma and radiation, are 
implicitly integrated using iteration method. This allows us to take a larger Cournat-Friedrichs-Lewy 
conditions when the magnetic Reynolds number is large or the plasma is optically thick. Our newly 
developed scheme would be applicable for a number of relativistic astrophysical phenomena. 

1. Introduction
Relativistic flows are appeared in many 

astrophysical phenomena, such as the jets from 
microquasars and active galactic nuclei, pulsar 
winds, soft  gamma-ray repeaters, core-collapse 
supernovae, and gamma-ray bursts. In many of 
these systems, the magnetic field has a crucial 
role in their dynamics. For example, the magnetic 
field connecting between the central star and the 
accretion disk, or, the different points of the 
accretion disks, are twisted and amplified due to 
the differential rotation, launching the jets [1-3]. 
The jets are also powered by the rotational energy  
of the blackhole via the Poynting flux [4]. The 
electric resistivity can play an important  in these 
dynamics since it changes the topology of the 
magnetic fields. The finite electric resistivity can 
be the origin of the flares observed in the high-
energy astrophysical phenomena [5-6].

The radiation field is also a key ingredient  to 
de t e rmine the dynamics o f r e l a t iv i s t i c 
phenomena. The radiation pressure force can 
facilitate the jet acceleration [7-9]. Recently the 
p roduc t ion o f magne t i ca l ly co l l ima ted , 
radiatively accelerated jet  is modeled using non-
relativistic radiation magnetohydrodynamic 
simulations [10]. Thus it is important to 
consistently take into account these effects to 
understand the relativistic phenomena. 

In the Relativistic Resistive Radiation 
Magnetohydrodynamics (R3MHD), there are four 
timescales in the system: (i) the dynamical time 
sale, tdyn (ii) light crossing time tc, (iii) damping 
timescale of electric fields tdamp, and (iv) 

absorption/emission or scattering timescales, tab 
and tsc. The first  two timescales are comparable in 
the relativistic fluids. The damping time scale 
tdamp, characterizing the magnetic diffusion due to 
the ohmic dissipation, can be much shorter than 
the former two timescales when the magnetic 
Reynolds number is larger than unity. Also tab and 
tsc can be much shorter than tdyn and tc in the 
optically thick medium. These facts indicate that 
R3MHD equations become stiff for the high 
magnetic Reynolds number and the large optical 
depth. Such stiff equations are difficult to 
explicitly integrate with time. In this paper, we 
developed an Explicit-Implicit scheme for 
solving R3MHD equations to overcome these 
problems. This is the first challenge for the 
R3MHD simulations in the world.

2. Outline of numerical scheme
In the following, we take the light speed as unity.  

The set of R3MHD equations is given by       

where ρ, uν, TMHDµν, Tradµν, Fµν, Iν, σ, q0, are the 
proper mass density, bulk four velocity, energy 
momentum tensors of magnetofluids and radiation, 
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Maxwell tensor of electromagnetic fields, four 
vector of the electric current, conductivity, and 
proper electric charge density, respectively. Gν is the 
radiation four force. Equation (1) - (5) describes the 
time evolution of the systems, while equation (6) 
gives the Ohm’s law. Another relation for the 
radiation field is needed to close the system, i.e., the 
closure relation. We utilize the general form of the 
closure relation as,

where Prij and Er are the radiation stress and the 
radiation energy density, while Dij is the so-called 
Eddington tensor, which is generally a function of 
radiation fields.
 In our treatment, equation (1) - (5) is integrated 
using an operator-splitting method. Then, these 
equations are symbolically expressed by

where U, F, S denote the conservative variable, flux 
and source term, respectively. The source term 
describes the magnetic diffusion and the gas-
radiation interaction so that equation (9) can be 
stiff. We propose that  equation (7) is explicitly 
integrated, while equation (9) is implicitly 
integrated using iteration method. The implicit 
scheme allows us to take the numerical time step δt 
larger than tdamp, tab and tsc.

3. Results and Conclusions.
 The first numerical test  is the so-called shadow 
problem. The computation is performed in the 2-
dimensional Cartesian coordinate. The gas 
distributes uniformly in space and the radiation 
field equilibrates with the gas. The optical depth of 
the system is about 0.01. There is a clump around 
the origin that the plasma density is 1000 times 
larger than that  of the uniform matter. The 
corresponding optical depth is about  10. The 
radiation is injected at  the left boundary (x=-5cm) 
with a constant  luminosity. Figure 1 shows the 
colour contour of the radiation energy at  the final 
state. In the upper panel, the Eddington 
approximation is assumed in the closure relation 
that the radiation field is isotropic in the momentum 
space. In the lower panel, the M-1 closure [10] is 
adopted, which allows the anisotropy of the 
radiation fields. We can see that  the radiation 
energy density is uniform in space outside the 
clump with the Eddington approximation, while the 
shadow is successively reproduced behind the 
clump with the M-1 closure. We have to note that 

the absorption timescale in the clump is about  10 
times shorter than the light  crossing time. This 
means that  the numerical solution can be unstable 
when the source term is explicitly integrated. In our 
numerical scheme, the implicit  integration of source 
term allows us to take a large time step without 
numerical instability. 

Fig.1. Numerical results of the shadow problems. Upper 
and lower panels correspond to results with the 
Eddington approximation and the M-1 closure. Colour 
shows the radiation energy density.
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