
24P150-P

Acceleration of plasma Particle-In-Cell simulation by GPU

プラズマ PIC 法シミュレーションの GPU による高速化

Kosuke Sawamoto, Yasunori Mizuno and Hiroshi Inuzuka

澤本 晃佑, 水野 保則, 犬塚 博

Shizuoka University 3-5-1, Johoku, Naka-ku, Hamamatsu 432-8561, Japan

静岡大学浜松 〒432-8561 静岡県浜松市中区城北 3-5-1

Particle-In-Cell (PIC) method is widely used in plasma simulation. In this poster we report the efficient

algorithm that runs PIC codes on Graphics Processing Unit (GPU). Especially, we focus on algorithms for

the process of particle-to-grid calculation which is the bottle neck operation for GPU. We try to optimize

the video memory access pattern by using a hash search algorithm. The calculation time of GPU is

approximately 30x faster than that of CPU (Intel Core2 Duo).

1. Introduction

 PIC methods are one of the most important

methods for plasma simulation and spend a long

time when a lot of particles are operated.

 The peak performance of NVIDIA GPU GeForce

GTX570 we use in our study is approximately

1.3TFLOPS. Using GPU for general purpose

computing, called General Purpose GPU (GPGPU),

is become wide spread and we expect that GPU can

speed up PIC simulation too. In this poster, we

report about our algorithm for GPU, its calculation

time and simple simulation result.

2. PIC method

 PIC method handles electric and magnetic field as

differential values on calculation grids [2]. The

code contains below (i-iii) processes. Process (i)

calculates the grid charge density from particle

position, process (ii) calculates the grid field from

grid charge density by solving Poisson's equation

and process (iii) moves particle from grid field.

 We have implemented all 3 processes to compute

on GPU. Within these processes, (i) is the most

difficult process to optimize for GPU. Process (i)

executes the calculation of equation (1) that

depends on index of particle i and index of grid j.

Operating these two indexes makes parallelization

difficult. To solve this problem, existent algorithms

[3,4] keep particles sorted state.

 X: grid position, x: particle position, q: particle or

grid charge, i: index of particle, j: index of grid.

2. Algorithm

 When we implement PIC code on GPU, it is the

most important to optimize the pattern of video

memory access because its access speed depends on

the pattern of parallel access [1]. Therefore the

random access that depends on particle index i or

grid index j of equation (1) is very slow. Access

time of the worst case is about 1/8 slower than that

of the best pattern.

 In our study, we try to use a hash search algorithm

to dissolve the random access at one dimensional

electrostatic model. Fig. 1 shows the image of data

structure. In this algorithm, particles that exist in

particular range are stored in a linked list and links

point the top of array. 32 particles are stored in this

array and one list is operated by 32 parallel

processes. This data structure can optimize the

video memory access by handling proper size array

for fast memory access pattern with one link.

 In this data structure, particles that have moved to

another cell which handled by the neighbor list

should be inserted to the proper list after the process

(iii). We draw these particles by using packing

operation.

Fig. 1. An image of data structure

4. Results

 We execute a simple simulation, electron-electron

two-stream instability [2], to measure calculation

times and to ensure that the simulation result

calculated by GPU is correct.

 Table I shows CPU (Intel Core2 Duo) times and

GPU times of processes (i-iii) and packing. These

times are average values of 1000 steps. In this

simulation, the number of particle is 8M and the

number of grid is 65536 and CPU executes a single

thread. Although there is some overhead of packing

operation, GPU time is faster.

 Fig. 2 shows vx-x phase-spaces of simulation

result. In images of phase-space, position x versus

velocity v of particles are plotted. In this simulation,

the number of particle is 2M and the number of grid

is 16384. Since the result of CPU and of GPU is

same and we can see the instability occurs among

two streams, we can conclude that the result of

GPU is correct.

Table I. calculation time

 CPU time [ms] GPU time [ms]

(i) density 158.8 1.5

(ii) field 29.3 0.16

(iii) move 233.7 1.9

packing - 9.3

total 421.8 12.9

Fig. 2. Electron-electron two stream instability

References

[1] NVIDIA: CUDA Programming Guide. (2011)

[2] C. K. Birdsall and A. B. Longdon: Plasma physics

via computer simulation. (1985)

[3] George Stantchev, William Dorland, Nail Gumerov:

Fast parallel Particle-To-Grid interpolation for

plasma PIC simulations on the GPU, j. Parallel

Distrib. Comput. 68(2008) 1339-1349

[4]Victor K. Decyk and Tajendra V. Singh: Plasma

Particle-in-Cell Codes on GPUs: A Developer's

Perspective, http://idre.ucla.edu/hpc/research/

documents/HPCC-victor-gpu.pdf (2010)

