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Understanding properties of warm dense tungsten, we have proposed a semi-empirical evaluation method 
of transport coefficients as a thermal conductivity. The electrical conductivity of warm dense tungsten has 
been evaluated by the exploding wire discharge in water and the isochoric heating of wire in a vacuum. 
The results indicate that the thermal conductivity derived by the electrical conductivity is from 0.1 to 100 
WK-1m-1 at temperature of 5000 K. 

 
 
1. Introduction 

Type of Tokamak in magnetic confinement 
fusion such as ITER and DEMO requires a 
divator. The divator is irradiated by the highly 
energetic particles from confined plasmas. 
Heating load on divator is estimated to be 10 
MW/m2 at steady state and 1000 MW/m2 at 
plasma disruption condition. To prolong the 
lifetime, the divator is going to be made by 
tungsten. Ablated tungsten affects to the fusion 
plasmas because of high-Z elements. Therefore, 
we should understand the effect of fusion plasma 
induced by the ablated tungsten. The ablated 
tungsten achieves warm dense state, which affects 
the coupled ions and the degenerated electrons 
including phase-transition such as liquid-vapor, 
triplet points. The thermal transport and the heat 
capacity in ablated tungsten should be evaluated.  

We proposed the evaluation of thermal 
transport coefficients and the heat capacity in 
ablated tungsten by using pulsed-power discharge 
and semi-empirical estimation. The pulsed-power 
discharge can evaluate the electrical conductivity 
in warm dense state, directly. Thermal transport 
coefficients in ablated tungsten may be 
recommended the ordinary relations. 

 
2. Experimental setup 

The experimental layout is previously published 
study using exploding wire discharge in water [3] 
and isochoric heating confined by sappier vessel [4]. 

To drive a wire explosion, we arranged low 
inductance capacitors cylindrically (8×0.4 µF). The 
capacitor bank was charged up to 10 kV to ensure 
vaporization of the wire.  

The mass density and temperature assuming local 
thermodynamic equilibrium is evaluated by the 
ratio of radius and the black body emission. The 
input energy history and the electrical conductivity 
is evaluated by the voltage-current waveforms and 
the expansion radius. 

 
3. Results and Discussions 

Figure 1 shows the electrical conductivity as a 
function of density at constant temperature in 
tungsten. Theoretical electrical conductivities based 
on the models of Spitzer [5], Lee-More [6], and 
Ichimaru [7] at 5000 K are also shown in Fig. 1. 
Figure 1 also indicates COMPTRA04 [8,9] made 
by Kuhlbrodt and Redmer at 10000 K. These results 
cover a wide density range for a material, from a 
liquid metal having highly degenerated electrons to 
plasma that approaches to ideal plasma conditions. 
COMPTRA04 indicates, fairly well, the 
dependence of high density regime of log10 (ρ/ρs) > 
−1.5.  

From these results, we reconstruct the thermal 
conductivity as following equation [10], 
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where, κ is the thermal conductivity, kB is the 
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Boltzmann constant, e is the elementally charge, T 
is the temperature, and σ is the electrical 
conductivity.  
  Figure 2 shows the thermal conductivity as a 
function of density at constant temperature of 
10000 K. Theoretical thermal conductivity based on 
the model of COMPTRA04. The results indicated 
that the thermal conductivity from empirical 
evaluation is almost comparative to the theoretical 
model of COMPTRA04 in high density regime of 
log10(ρ/ρs) > -1.5. Thus, the method of empirical 
thermal conductivity estimation by using electrical 
conductivity is valid for the high density regime. 
  Figure 3 shows the thermal conductivity as a 
function of density at constant temperature of 5000 
K. The predicted thermal conductivity reduces at 
log10(ρ/ρs)>-1.5. The minimum thermal 

conductivity is estimated to be 0.1 WK-1m-1.  
 

4. Summary 
  We proposed semi-empirical evaluation method 
for thermal conductivity of dense tungsten for 
disrupted fusion plasma by using puled-power 
discharges. This method can predict the thermal 
conductivity from solid density to log10 (ρ/ρs) > −
1.5. The predicted thermal conductivity reduces at 
log10 (ρ/ρs) > −1.5 with 5000 K of temperature. The 
results indicate that the thermal conductivity 
derived by the electrical conductivity is from 0.1 to 
100 WK-1m-1 at temperature of 5000 K. We will 
demonstrate the numerical simulation of thermal 
conductions and crosschecked evaluated thermal 
conductivity.  
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FIG. 2. !Color online" Electrical conductivities of copper, aluminum, and
tungsten as a function of density at 5000 K"10%. The solid line as !1"
indicates the Spitzer conductivity model !Ref. 33", the dot-dashed line as !2"
reveals the Ichimaru conductivity model !Ref. 34", the dashed line as !3"
denotes the Lee–More conductivity model !Ref. 35", the dotted line as !4"
shows the Kuhlbrodt and Redmer model from COMPTRA04 !Ref. 13" at
temperature of 10 000 K, and the dot-dot-dashed line as !5" indicates the
Lee–More–Desjarlais model !Ref. 14" at temperature of 6000 K in copper
and 10 000 K in aluminum. The squares, which are shown in !a", denote
DeSilva’s electrical conductivity results !Ref. 24" at 6000 K.
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Fig. 1 Electrical conductivity of tungsten as a function of 
density at 5000K±10%. The solid line as (1) indicates 
the Spitzer conductivity model [5], the dash-dotted line 
as (2) reveals the Ichimaru conductivity model [6], the 
dashed line as (3) denotes the Lee-More conductivity 
model [7], and the dotted line as (4) Kuhlbrodt and 
Redmer model from COMPTRA04 at temperature of 
10000K. 
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Fig. 2 Thermal conductivity of tungsten as a function of 
density at 10000K± 10%. The solid line indicates 
COMPTRA04. 

Fig. 3 Thermal conductivity of tungsten as a function of 
density at 5000K±10%.  


