Economic Analysis of Tokamak and Spherical Tokamak Advanced Fuel Fusion Reactors

トカマク型及び球状トカマク型先進燃料核融合炉の経済性評価

<u>Takuya Kondo</u>, Kozo Yamazaki, Tetsutarou Oishi, Hideki Arimoto, Tatsuo Shoji 近藤拓也, 山﨑耕造, 大石鉄太郎, 有本英樹, 庄司多津男

Department of Energy Engineering and Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan 名古屋大学 〒464-8603 名古屋市千種区不老町

D-³He fusion reactor has very low neutron wall load and D-D fusion reactor has abundant fuel resources, compared with D-T reactor. Not only engineering issues but also economic assessments are important in order to achieve these advanced fuel fusion reactors as commercial plants. We calculated and compared COEs of D-T, D-³He and catalyzed D-D fusion reactors. The assessment results show that D-³He and D-D reactors require high beta confinement system and high plasma temperature, in order to obtain COE of these reactors as low as that of D-T reactor.

1. Introduction

D-T fusion reactor would be the first commercial reactor, because D-T reaction has relatively high reaction rate at low plasma temperature. However, about 80 percents of the power of the D-T reactor is from 14.1MeV neutrons. These neutrons activate the reactor wall, and the D-T reactor needs replacement of wall and other components every few years. In addition, the D-T reactor needs radioactive substance (tritium) breeding and storage system. Then, D-³He and D-D reactions are expected as next-generation advanced fusion reactions; because D-³He reaction generates no neutron and D-D reaction has abundant fuel resource. To achieve a commercial fusion reactor., it is important to check economics of these reactors as well as technical issues to be resolved. In this study, we estimate the costs of D-T and advanced fuel fusion plants and compared with each other.

Table I. Reference cases of reactors

2. Analysis Procedures

We calculate cost of electricity (COE) of fusion reactors using PEC (Physics-Engineering-Cost) system code [1]. PEC code calculates plasma parameters and engineering designs of fusion reactors to satisfy target output electric power and ignition margin.

3. Reactor model

We estimate three types of fuel cycle, D-T, D-³He and catalyzed D-D, and two types of confinement system; Tokamak Reactor (TR) and Spherical Tokamak reactor (ST). Combining them, we estimate five types of reactor system, TR D-T, TR D-³He, TR cat D-D, ST D-T and ST D-³He. The cat D-D reactor system recycles T and ³He produced by D-D reaction, and extracts energy of D-T and D-³He reaction.

Blanket model is Flibe/FS like FFHR [2] and D-³He is assumed no blanket system like ARIES-3

Confinement system	TR			ST	
Fuel cycle	D-T	D- ³ He	cat D-D	D-T	D- ³ He
Net electric power P _{enet} (GW)	1.00	1.00	1.00	1.00	1.00
Normalized beta β_N^a	4	8	8	8	8
Aspect ratio A ^a	3.53	3.53	3.53	1.62	1.62
Maximum field $B_{max}(T)^a$	13	13	13	8.75	13
Central ion temperature $T_i(0) (KeV)^a$	30	70	70	30	70
Plasma major radius $R_p(m)$	6.40	8.57	9.05	4.00	6.63
Toroidal field $B_t(T)$	6.15	7.81	7.60	2.34	3.30
Fusion power (GW)	3.49	2.74	2.83	4.71	2.67
Neutron power (GW)	2.79	0.07	1.33	3.76	0.06
Power density (MW/m ³)	4.66	1.52	1.34	3.22	0.40
Neutron wall load (MW/m ²)	3.62	0.05	0.88	5.08	0.03

^a Input parameters

[3]. Features of ST are low aspect ratio and no inner blanket. The coil of ST D-T reactor is assumed normal conducting for central post coil, but the coil of ST D-³He is assumed super-conducting.

We fixed the following input parameters; target net electric power is 1000MW, plant availability is 75%, operating period is 30 year and target ignition margin is 1.01. Reference cases of reactors are shown Table.I.

4. Results

Dependence of COE on normalized beta value (β_N) is shown in Fig.1. High β_N improves plasma confinement performance; as a result, required plasma volume decreases. Therefore, the size of a reactor becomes small and COE falls. D-³He and cat D-D have a lower output power density, and require larger plasma volume, compared with D-T plasma volume.

D-³He and cat D-D reactors need high β_N and high ion temperature (=70keV) in order to obtain almost same COE of TR D-T (at β_N =4~5). However, conventional Tokamak system seems to be difficult to achieve high β_N value (>5). Because ST can have high β_N , ST is expected to be a confinement system suitable for D-³He and cat D-D reactors.

Figure 2 shows COE breakdown of reference cases. Since $D^{-3}He$ and cat D-D requires large plasma major radius R_p , the cost concerning construction becomes large and, the capital cost becomes large. Because of neutron damage to the first walls, D-T reactor requires frequent replacement of blanket within plant lifetime. In contrast, D-³He reactor has very low neutron wall load, and no need to replace blanket. Thereby, D-³He reactor has almost no replacement cost. Cat D-D has relatively low neutron wall load; therefore,

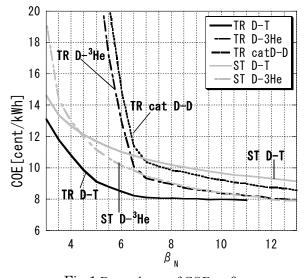
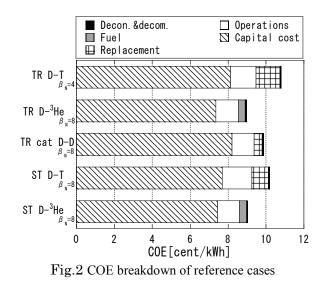



Fig.1 Dependence of COE on β_N

replacement cost is assumed as 1/3 of the replacement costs of D-T. In addition, D-³He and cat D-D reactor can omit tritium breeding system. However, ³He gas is very precious resource on the earth. In this study, we assumed that the scenario taken out ³He from the moon's surface [4], and it was calculated by 200\$/g.

Assuming high ion temperature (=70keV) and high β_N (>7), COE of advanced fuel fusion reactors are expected to be similar to that of D-T reactor.

References

- K.Yamazaki, and T. J. Dolan: Fus. Eng. Des. 81 (2006) 1145.
- [2] A.Sagara, O. Motojima, et al.: Fus. Eng. Des. 29 (1995) 51.
- [3] F.Najmabadi, R.W.Conn, et al, "The ARIES- III Tokamak Fusion Reactor Study – The final report," UCLA report UCLA – PPG-1384, (1992).
- [4] L.J. Wittenberg, E.N. Cameron, et al.: Fusion Tech. 21 (1991) 2230.