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A numerical model for classical/neo-classical cross field diffusion of impurity ions in the magnetic 

fusion devices are being developed based on the Binary Collision Monte-Carlo Model. As a first step, 

the model validation has been done for a simple case with a uniform magnetic field. Reasonable 

agreement between the numerical result and the theoretical has been obtained. In addition to the 

conventional self-diffusion, the cross field transport towards the direction of the background density 

gradient predicted by the theory is also observed in the simulation. 

  

 

1. Introduction 
Understanding and control of impurity transport is 

one of the important issues to reduce the impurity 
radiation in the fusion core plasma region. Especially, 
impurity accumulation due to the neo-classical 
transport in the magnetic confinement devices, such 
as tokamaks, i.e., cross field transport by Coulomb 
collisions of impurity ions with background fuel ions 
(hydrogen) is one of possible causes. Impurity core 
penetration of tungsten impurity ions has been 
reported in the experiment during ICRF heating [1]. 
The reason, however, has not been clearly 
understood yet up to now.  
The purpose of the present study is to examine 

whether the neo-classical transport process of 
impurity ions is correctly incorporated in the 
impurity transport code -”IMPGYRO” [2]. As a first 
step, we have validated impurity cross field diffusion 
in a uniform magnetic field in the IMPGYRO-code 
by comparing with a classical theory of cross field 
diffusion [3].  
 
2. Cross-Field Diffusion of Charged Particles [3] 
  We first briefly summarize the classical theory of 
cross field diffusion based on Ref. 3. Consider now 
two types of particle, which we denote by subscript 
1 and 2. The general expression for the flux 

1
( )F X  

of guiding centers of type 1 due to stochastic 
process, i.e., Coulomb collisions of particles 1 and 
2, is given by, 
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where 
1
( )N X  and 

1
X∆ are the density of the guiding 

center of the particle species 1, and the step of the 
guiding center.  
The step 

1
X∆  is related to the change in the 

y-component of the velocity as 
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Under the uniform magnetic field 
z
B  and the 

assumption that the both particle species are 

magnetized with their Larmor radii 
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m mass) are the particle speed 

and the cyclotron frequency of the i-th species, 

respectively. For a guiding center of particle 1 at X , 

the associated particle 1 is at 
1 1

/
y c

x X v ω= − . The 

density of particles 2 at x  is the same as density of 

guiding centers  of  particles 2 at 
2 2

/
y c

x v ω+  
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X v vω ω= − + . Hence, the probability per unit 

time that a particle 1 with guiding center at X  will 

be involved in a collision, with scattering into solid 

angle dΩ is given by 
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where
1
g ,

2
g ( )σ Ω , and v  are the normalized 

velocity distributions, the differential scattering cross 
section of Coulomb collision, and the relative 
velocity 

1 2
v = −v v , respectively. In addition, δ is 

given by 
2 2 1 1

/ /y c y cv vδ ω ω= − from Eq. 2.  
  Using Eq. 3, we can calculate the first and the 
second moment of 

1
X∆  in Eq. 1 as follows:  
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Here, α  is a numerical factor depending on the 
mass 

1
m  and 

2
m , and 

12
ν is the collision frequency. 

It should be noted that Eq. 5 gives the self-diffusion 
of the particle species 1, while Eq. 4 gives the 
transport of the particle species 1 towards the density 
gradient of the species 2. 
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Fig. 1 Time evolution of the average position 
1
X< >  

 

 

 

 

 

 

 

 

 

Fig. 2 Time evolution of the variance 2

1
( )X< >  

 

 

3. Numerical Model 

    The trajectory of each test particle is followed by 
Boris-Buneman algorithm [4]. In order to calculate 
the velocity change ∆v due to Coulomb collision, 
the Binary Collision Monte-Carlo (BCM) model has 
been used, i.e., the scattering angle Θ  and Φ  are 
given in the following manner; 2 UπΦ = , 

2arctanδΘ = , where U  is a uniform random number 

and δ  is sampled from the normal distribution with 
the mean value δ< >  and the variance 2

δ< > [5] , 
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Here lnΛ  is Coulomb logarithm, M is the reduced 
mass of the species 1 and 2, 

0
ε  is the permittivity of 

vacuum and 
c
t∆  is the time-duration between two 

successive binary collision. The particle density 
2

N  
in Eq. 6 is evaluated at the actual position of each 
test particle.  
 
4. Results and Discussion 

Test simulations have been done under following 
conditions as a reference case: 1) particle species 1: 
tungsten (W) with charge state Z=1 as particle 
species 1, 2) particle species 2: background 
Deuterium (D), with the density scale length 

2 2/( / ) 0.1N dN dx = − . 3) The initial velocity of the 
species 1and the velocity of background species 2 
are sampled from the Maxwell velocity distribution 
with a same temperature, and 4) uniform magnetic 
field ( 5T

z
B = ). 

Figure 1 and 2 show the simulation results of 

1
X< >ɶ and 2

1
( )X< >ɶ . The results are obtained by taking 

an ensemble average over all the test particles 
( 510 particles) and normalized by Larmor radius.  
 

 

 

 

 

 

 

 

 

 

Fig. 3 Impurity transport 
1

/X t< ∆ > ∆  due to background 

density gradient as a function of impurity charge state. 

 

 
 

 

 

 

 

 

 

 

Fig. 4 Self-diffusion coefficients 
1

2
( /)X t< ∆ > ∆  in 

comparison with the theoretical value 

 

The theoretical values 
1

/X tν< >ɶ  in Fig. 1 and 

1

2
( /)X tν< >ɶ  in Fig. 2 are obtained from Eq. 4 and 

from Eq. 5, respectively. 
Figure 3 shows the simulation results 

1
/X t< ∆ > ∆  

for the different charge state Z of the species 1. 
Figure 4 compares the simulation results 

1

2
( /)X t< ∆ > ∆ with the theoretical values for the 

different values of the magnetic field ( 2T 5TB = ～ ). 
The results are plotted as a function of the 
magnetized parameter 

1c
ω τ

1 12( / )cω ν= . The 
numerical values of 

1
/X t< ∆ > ∆  and 

1

2
( /)X t< ∆ > ∆  

in Fig. 3 and 4 are obtained by a linear fitting of the 
time evolution of 

1
X< > and 2

1
( )X< > .  

              
5. Conclusion and future study 

 As seen from Figs. 1-4, reasonable agreement has 

been obtained between the numerical and theoretical 

results. The model improved in the present study will 

be incorporated in the IMPGYRO code.  

Neo-classical cross-field diffusions in realistic 

tokamak magnetic configuration will be studied in 

the future. 
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