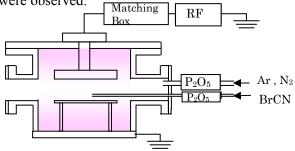
Fabrication of a-CN_x films by plasma decomposition of BrCN BrCN の放電分解による a-CN_x薄膜の形成 <u>Kohtaro Okada</u>, Teppei Tsuda, Hiroki Akasaka, Hidetoshi Saitoh, Haruhiko Ito

岡田亘太郎、津田哲平,赤坂大樹,斎藤秀俊,伊藤治彦

Nagaoka University of Technology 1603-1, Kamitomioka, Nagaoka, Niigata 940-2188, Japan 長岡技術科学大学 〒940-2188 新潟県長岡市上富岡町1603-1


Amorphous carbon nitride (a-CN_x) films with high nitrogen content ([N]/([N]+[C])=0.35–0.5) are formed by the RF discharge of the gas mixture of BrCN, Ar and N₂. Compositional analysis was made by XPS. The CN(B² Σ^+ -X² Σ^+) emission spectra were observed. A correlation between the emission intensity and the [N] / ([N] + [C]) ratio indicates the mechanism of the incorporation of N atoms when N₂ is introduced.

1. Introduction

Amorphous carbon nitride $(a-CN_x)$ films have been attracted much attention due to the expectation of their mechanical hardness [1]. This expectation is based on the shortness of the length (1.48 Å) of the C-N bonds compared with that (1.54 Å) of C-C in the sp^3 hybridized state [2]. Therefore, it has been the central problem in the field of the synthesis of $a-CN_x$ to incorporate N atoms as much as possible. However, it is difficult to obtain high-N content by using the frequently-used method of the RF discharge of the gas mixture of N₂ and hydrocarbons. Ito and co-workers have developed an alternative method to $a-CN_r$ films by deposit using the decomposition of BrCN with the microwave discharge flow of Ar [3]. This reaction produces efficiently CN radicals which become the precursor of the film formation, leading to the high-N content $([N]/([N]+[C]) \leq$ 0.5) of the resultant films [4]. In this study, $a-CN_x$ films are deposited by using the RF-plasma decomposition of BrCN diluted with Ar. In this reaction system, it is suspected that CN radicals may be further decomposed into C and N atoms. This "excess decomposition" may lead to the lowering of the [N]/([N]+[C]) ratio below 0.5, because the sticking probability of N atoms is quite small, 0.0041 [5]. In this experiment, N₂ was added to the reaction system to "compensate" the N content of films. The observation on the $CN(B^{2}\Sigma^{+}-X^{2}\Sigma^{+})$ emission spectra was made to discuss the mechanism of this "compensation of N atoms".

2. Experimental

Fig. 1 shows the experimental arrangement for the deposition of a-CN_x films. Si substrates were placed on the centers of the RF and grounded electrodes. After the chamber was evacuated <3 mTorr, Ar (0.1 Torr) was introduced through a desiccant (P₂O₅). Prior to the film deposition, RF plasma of Ar was generated for 4 h. Then, BrCN and N₂ were introduced into the chamber through P₂O₅. Films were deposited for 2 h. The partial pressures of Ar and N₂ (P_{Ar} and P_{N2} , respectively) were in the range of 0.0–0.3 Torr. After the deposition, films were analyzed by XPS, Raman, and IR. The optical emission spectra of the CN (B²Σ⁺–X²Σ⁺) transition were observed.

3. Results and discussion

The results of the compositional analysis using XPS are listed in Tables 1 and 2. According to these results, nitrogen content of the films were increased by introducing N_2 .

Table 1 Compositional analysis (Grounded electrode)

Ar [Torr]	N ₂ [Torr]	С	N	0	Br
0.3	0	54	30	10	6
0.2	0.1	44	35	13	8
0.1	0.2	41	41	13	5
0	0.3	46	39	10	5

Table 2 Compositional analysis (RF-electrode)

Ar [Torr]	N ₂ [Torr]	С	Ν	0	Br		
0.3	0	55	25	14	6		
0.2	0.1	48	35	10	7		
0.1	0.2	43	42	10	5		
0	0.3	51	36	6	7		

Fig. 2 shows the variation of the [N]/([N]+[C]) ratio as a function of P_{N2} . The ratio was ≈ 0.35 under the condition that N₂ was not introduced. When P_{N2} was increased, the [N]/([N]+[C]) ratio increased. This ratio became the maximum (≈ 0.5) under the condition of $P_{N2}=0.2$ Torr. The ratio dropped to 0.45 when Ar was not introduced.

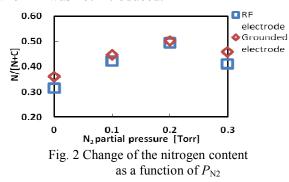
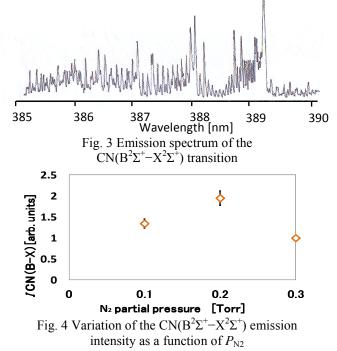



Fig. 3 shows the emission spectrum of the $CN(B^{2}\Sigma^{+}-X^{2}\Sigma^{+})$ transition under the condition of $P_{Ar}=0.1$ Torr and $P_{N2}=0.2$ Torr. Fig. 4 shows the variation of the intensity of the $CN(B^{2}\Sigma^{+}-X^{2}\Sigma^{+})$ emission spectrum as a function of P_{N2} . In this figure the intensity observed for $P_{N2}=0.3$ Torr was normalized to 1. As shown in Fig. 4, the highest emission intensity was observed under the condition of $P_{N2}=0.2$ Torr.

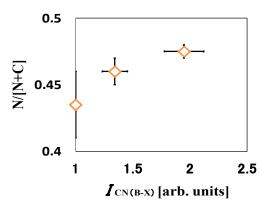


Fig. 5 Nitrogen content vs. emission intensity

Fig. 5 shows the variation of the nitrogen content as a function of the emission intensity. From Fig. 5, a strong correlation was observed between the emission intensity and the nitrogen content. The result shown in Fig. 5 indicates that CN radicals are the main source of nitrogen of films even under the condition of introducing N₂. Accordingly the mechanism of the "compensation of N atoms" in the films may be that C atoms produced via the "excess decomposition" of BrCN react with the discharged product of N₂ to form CN radicals which deposit to form a-CN_x with [N]/([N]+[C]) ≈ 0.5 .

4. Concluding remarks

Films of a-CN_x were deposited onto Si substrates using the RF plasma excitation of the gas mixture of BrCN and Ar. By introducing N₂ into the reaction region, the N contents of films were controlled as 0.35-0.5; films formed under the condition of $P_{Ar}=0.1$ Torr and $P_{N2}=0.1$ Torr has the highest [N]/([N]+[C]) (=0.5). According to the correlation between the [N]/([N]+[C]) ratio of films and the CN(B²Σ⁺-X²Σ⁺) emission intensity, the effect of the N₂ addition was elucidated; the discharged products of N₂ react with C atoms produced via the "excess decomposition" of BrCN to form CN radicals which becomes the precursor of the film formation.

References

[1] W. Kulisch, Deposition of Diamond-Like Superhard Materials, Springer-Verlag, Berlin, 1999

[2] J. R. Fuhr and W. L. Wiese, in: D. R. Lide (Ed.), CRC Handbook of Chemistry and Physics, CRC Press,Boca Raton, 1998, Chap. 9.

[3] H. Ito, N, Ito, T. Takahashi, H. Takamatsu, D. Tanaka and H. Saitoh: Jpn. J. Appl. Phys. **39**, 1371(2000)

[4] A. Wada, H. Araki and H. Ito, J. Phys. D Appl. Phys. **43** (2010) 045021.

[5] T. Nakano, H. Toyoda, and H. Sugai, Jpn. J. Appl. Phys. **30** (1991) 2912.