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In ultra-high density plasmas as realized in inertial confinement fusion, the electron degeneracy can arise 

and it is thought to affect the energy distribution of coexisting ions through Coulombic ion-electron 

interaction. We evaluate these effects by developing and solving the model equation for the distribution 

function of ions coexisting with degenerate electrons. It is shown that the ion distribution maintains a 

Maxwellian form at a temperature equal to that of degenerate electrons. 

 

1. Introduction 
In inertial confinement fusion, the fuel is 

compressed to ultra-high density as 1000 times the 

solid density and the wave nature of electron 

becomes conspicuous in such plasmas. Since 

electron is fermion, the energy transition is 

restricted by Pauli’s exclusion principle and such 

situation is called “electron degeneracy”. The 

degree of degeneracy can be evaluated by the 

degeneracy parameter Fe EkTΘ / (EF is Fermi 

energy); the smaller it is, the stronger the 

degeneracy becomes. The consequences of electron 

degeneracy are as follows: 

(a) The electron distribution function becomes to 

follow the Fermi-Dirac statistics. 

(b) Scattering between an electron and other 

particle is restricted (Pauli blocking). 

In addition, these events can also affect the energy 

distribution of coexisting ions through Coulombic 

ion-electron interaction. These effects can be 

evaluated by calculating the distribution function of 

ions, but there has been no proper equation in 

which are perfectly incorporated the above two 

effects due to electron degeneracy. Thus we 

develop the model equation to describe the 

distribution function of ions coexisting with 

degenerate electrons and estimate the magnitude of 

these effects by solving it. 

 

2. Derivation of the equation followed by the ion 

distribution function 
We start from the balance equation consisting of 

the scattering collision term (in- and out-scattering 

rates), the loss rate due to nuclear reactions and the 

independent source. Usually, small-angle Coulomb 

scattering term is written in the Fokker-Planck (FP) 

form, but the FP term is not suitable for describing 

individual scattering; it is difficult to incorporate 

Pauli blocking, which is effect on the individual 

scattering, into the final form of the FP term. 

Therefore we get back to the Boltzmann integral [1] 

and incorporate Pauli blocking into it. After that, 

we recover the FP-like form for small-angle 

Coulomb scattering. Instead of verbosity v we use 

energy E as an independent variable and adopt the 

flux (E) defined by (E) = v f
 
(E), where f

 
(E) is 

the ion energy distribution function. The final form 

of the equation in steady-state is 
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where n 

j is the number density of “background” 

species j. On the left-hand side, the first and second 

terms are respectively the removal rate due to 

large-angle scattering and the loss rate due to 

absorption. The first and second terms on the 

right-hand side are the expansions of the small- 

angle scattering term. The third term represents the 

large-angle in-scattering rate. The last term is the 

independent source. The (differential) cross 

sections in Eq. (1) are the averages over the thermal 

motion of target j [2] and the symbol “NI ” 

represents “elastic nuclear plus interference 

scattering”. Additionally Sj and Dj are quantities 

defined during processing the small-angle Coulomb 

scattering term; the former is the Coulombic 

stopping power while the latter is the energy 

dispersion coefficient. The effects of electron 

degeneracy are incorporated in these coefficients. 
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3. Results and discussion 

Supposing steady-state DT plasmas at various 

electron temperatures Te and degeneracy parameters 

, and fixing the distribution function of electrons, 

we solved Eq. (1). Figure 1 presents, as an example, 

the deuteron distribution function when Te = 0.5keV, 

 = 0.1. The solid curve shows the distribution 

function calculated by fully considering the effect 

of electron degeneracy, while the dashed curve is 

obtained by partially considering the degeneracy 

effect, that is the electron distribution function 

based on the Fermi-Dirac statistics was used but 

Pauli blocking was ignored. The dotted curve 

(almost falling on the solid one) is the result in the 

case ignoring the electron degeneracy. It can be 

seen that each ion distribution function forms the 

Maxwellian distribution. However, the ion 

temperature gets higher when the degeneracy effect 

is patially considered.  
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Fig.1. Deuteron distribution function 

 

From the calculated distribution function we 

evaluated the ion temperature: 
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Figure 2 presents  dependency of the ion 

temperature when Te = 0.5keV. In the case where 

the electron degeneracy is ignored, the ion 

temperature is equal to the electron temperature. 

As for how to incorporate the electron 

degeneracy, we obtain the following results: 

(a) The ion temperature gets higher when the 

degeneracy effect is partially included (ignoring 

Pauli blocking), and this is significant at low 

region. 

(b) However, the result of (a) disappears when we 

consider Pauli blocking. 

  The event like (a) can be explained as follows. 

When the electron degeneracy arises, the number of 

electrons in lower energy region, which are 

susceptible to Coulomb interaction, gets smaller 

and Coulomb interaction they undergo gets 

weakened. Therefore the energy being transferred 

to ions from the electrons gets smaller than that in 

the case of non-degenerate plasmas. As a result, the 

ion distribution function spreads toward 

high-energy side in order to weaken Coulomb 

interaction that the ions undergo, and the ion 

temperature gets higher, because the distribution of 

ions is determined so that the energy flows between 

the ions and the electrons are canceled each other. 

  Meanwhile the event like (b) happens for the 

following reasons. Pauli blocking mainly restricts 

energy gaining of the electrons because of higher 

probability of electron occupation in the 

lower energy region, and the energy moving to 

electrons from the ions lessens. In other words, the 

energy transferred to ions from electrons relatively 

becomes larger. This effect counteracts the result of 

(a), so the ion temperature does not change from the 

result without considering the electron degeneracy. 
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Fig.2. Ion temperature 

 

4. Conclusion 

By properly incorporating the effect of electron 

degeneracy, we have found the following results; 

the ion distribution function maintains Maxwellian 

form and the ion temperature becomes equal to the 

electron temperature even if electrons are in 

degenerate state. This is because two effects of 

electron degeneracy counteract each other. 
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