
 

  

Collisional Kinetic-Fluid Closure Model for Zonal Flows 
ゾーナルフローに対する衝突性運動論的流体クロージャーモデル 

Hideo Sugama and Osamu Yamagishi 
洲鎌英雄, 山岸統 

 
National Institute for Fusion Science / Graduate University for Advanced Studies 

322-6 Oroshi-cho, Toki, Gifu 509-5292, Japan 
核融合科学研究所・総合研究大学院大学 〒509-5392 岐阜県土岐市下石町322-6 

 
A novel kinetic-fluid closure model is presented, which describes collisional damping of zonal flows in the 
ion temperature gradient turbulence in tokamaks. The closure relations representing the parallel heat fluxes 
are derived from the Laplace transform of the solution to the bounce-averaged collisional ion gyrokinetic 
equation for the radial wave number vector corresponding to the zonal-flow component. Approximate 
expressions for the closure relations are also obtained, which are suitable for numerical simulation.    

 
1. Introduction 

Zonal flows are intensively investigated in the 
fusion research as an attractive mechanism for 
realizing a good plasma confinement [1]. An 
accurate theoretical description of zonal-flow 
evolution is a key issue for correctly predicting 
the turbulent transport of fusion plasmas. In fact, 
unless the residual zonal flow [2] is properly 
treated in a gyrofluid model, the gyrofluid 
simulation cannot reproduce the same turbulent 
transport as given by the gyrokinetic simulation. 
In order for a set of gyrofluid fluid equations to 
describe the residual zonal-flow level given by 
Rosenbluth and Hinton [1], a novel collisionless 
kinetic-fluid closure model of zonal flows in 
tokamaks was presented by Sugama et al.[3], 
which differs from the zonal-flow closure model 
by Beer and Hammett [4]. It is confirmed from 
the fluid simulations of zonal-flow damping [5] 
that the collisionless kinetic-fluid closure model 
of zonal flows [3] correctly reproduces the 
residual zonal flow level predicted by the kinetic 
theory, in which effects of the noncircular 
tokamak cross section can be included. Behaviors 
of zonal flows are also influenced by collisions 
[6]. In fact, the gyrokinetic simulation of the ion 
temperature gradient (ITG) turbulence shows that 
the turbulent transport level significantly depends 
on the collision frequency through the collisional 
damping of zonal flows [7]. In the present work, 
we extend the closure model to take account of 
collisional effects on zonal flows.  

 
2. Kinetic-Fluid Equations 

In the same way as in [3], we take the velocity 
moments of the electrostatic gyrokinetic equation 
for the perturbed gyrocenter distribution function 
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Consequently, we obtain the perturbed gyrocenter 
density equation,  
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the parallel momentum balance equation,  
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the perturbed parallel pressure equation, 
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and the perturbed perpendicular pressure equation, 
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nonlinear terms defined in [3]. The right-hand sides 
of (2)-(4) contain the third-order fluid variables (or 
parallel heat fluxes), 
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and the fourth-order fluid variables 
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In order to construct a closed system of 
kinetic-fluid equations, we need closure relations, 
which express the higher-order fluid variables in 
(6)-(7) in terms of the lower-order variables in (1). 
 
3. Closure Model 

Here, we consider the ion temperature gradient 
(ITG) turbulence for typical perpendicular wave 
numbers of fluctuations are given by 
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. We now derive the closure 
relations for the high-order fluid variables in the 
fluid equations (2)-(5) for ions instead of the ion 
gyrokinetic equation to accurately describe the 
zonal-flow behaviors in the ITG turbulence. The 
collionless case was already treated in [3]. We 
assume the weakly collisional case, in which the 
collisional effects on the short-time behaviors of the 
fluid variables are neglected. Then, the same 
closure relations as (61)-(62) in [3] can be used for 
the shot-time evolution parts of the parallel heat 
fluxes 
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derived from the solution of the bounce-averaged 
collisional ion gyrokinetic equation for the radial 

wave number vector 
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the zonal-flow component. The resultant closure 
relations are given in terms of the Laplace 
transform
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where 
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Here, 
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For installing the closure relations into numerical 
simulation codes, it is useful to express 
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( j =1,2) approximately as  
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where 
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" j = limp#$ " j (p) ( j =1,2)  are defined in 
[3] and 
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"  represents the typical time scale of the 
collisional damping of the zonal-flow potential. The 
approximate expressions in (12) are shown to 
enable the closure relations to be written in the form 
of the first-order differential equations in time.  
 
4. Summary 

In this paper, the new kinetic-fluid model is 
derived, which describes behaviors of zonal flows 
in the ITG turbulence for the weakly collisional 
case. The collisional effects are included in the 
closure relations for the long-time evolution part of 
the parallel heat fluxes. The approximate 
expressions for the closure model are also shown 
and numerical simulation using them remains as a 
future task to confirm their validity. 
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