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A hybrid method of semi-Lagrangian and additive semi-implicit Runge-Kutta schemes for gyrokinetic f 

Vlasov simulations is presented. This method is free from the Courant-Friedrichs-Lewy condition for the 

linear terms in the gyrokinetic equation. Simulations of parallel dynamics and of the ion-temperature- 

gradient instability in fusion plasmas confined by helical magnetic fields are carried out by means of this 

method. It is demonstrated that their results show good agreements with those obtained by using the 

explicit Runge-Kutta-Gill scheme, while the new numerical method has no time-step restrictions for the 

linear terms and substantially reduces the computational cost. 

 

 

1. Introduction 
Three-dimensional configurations of helical 

plasmas bring numerical difficulties to gyro- 

kinetic simulations of micro-instabilities. To 

investigate the ion-temperature-gradient (ITG)- 

driven turbulence in helical plasmas, Watanabe et 

al. employ a large number of grid points along a 

magnetic field line in the gyrokinetic Vlasov 

simulation code GKV [1]. As a result, the 

Courant-Friedrichs-Lewy (CFL) condition on the 

parallel advection severely restricts time steps. To 

address this problem, we propose an efficient 

numerical method for linear analysis of micro- 

instabilities in helical plasmas by means of gyro- 

kinetic Vlasov simulations, employing semi- 

Lagrangian and additive semi-implicit Runge- 

Kutta schemes. The new scheme is free from the 

CFL restrictions for the linear terms. 

 

2. Equations and schemes 
Employing the flux tube model, the linearized 

gyrokinetic Vlasov equation for the perturbed ion 

gyrocenter distribution function fk(z,v||,) in the 

electrostatic limit is given by 
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where B, mi, e, FM, Ti, d, ∗ and ti are the 

magnetic field strength, ion mass, elementary 

charge, Maxwell distribution function, ion 

temperature, magnetic and diamagnetic drift 

frequencies and ion Larmor radius, respectively. 

The radial and poloidal wavenumber kx and ky, the 

field-aligned coordinate z, the parallel velocity v|| 

and the magnetic moment  are employed as the 

phase space coordinates. The electrostatic potential 

k is given by the quasi-neutrality condition with an 

adiabatic electron response. 

By means of the operator splitting method [2], Eq. 

(1) can be split into the parallel motions and the 

others. The former consists of two linear advection 

equations in z and v||. They are easily computed by 

a semi-Lagrangian scheme [3]. Practically, one has 

to evaluate the value of fk by using one-dimensional 

interpolations. For more details, see Ref. [4]. The 

latter is regarded as an additive operator of the 

perpendicular drift, source and collision terms. To 

solve this problem, we employ additive semi- 

implicit Runge-Kutta schemes (ASIRK) [5] and 

treat the magnetic drift term implicitly. Since the 

coefficient matrix of the magnetic drift term is 

diagonal, one can easily compute its semi-implicit 

time integration without using matrix solvers. 
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3. Parallel dynamics in helical plasmas 

Here we compute only the parallel dynamics by a 

semi-Lagrangian scheme with a second-order 

operator splitting method. We employ 192×256 grid 

points and a time step size t/ttr = 0.1, where ttr 

=Ln/vti with the density scale length Ln and the ion 

thermal velocity vti.The initial profile is given by f 

(z,v||;t=0) = FM(mv||
2
/2+B)(1+cosz), and the 

periodic boundary condition is employed in z. 

Characteristic curves of the dynamics are given as 

contour lines of the particle kinetic energy, as 

shown in Fig. 1 (a). There are trajectories of 

helical-ripple-trapped particles as well as those of 

passing particles. Snapshots of the contour lines of 

the distribution functions are shown in Fig. 1 (b)-(d). 

The distribution function is advected along the 

contour lines of the particle kinetic energy. While 

passing particles elongate the profile, trapped 

particles stay in the trapped regions. Thus, 

fine-scale structures appear at the trapped-passing 

boundary. 

 

4. Linear ion-temperature-gradient instabilities 

in helical plasmas 

Employing the hybrid method of semi- 

Lagrangian and additive semi-implicit Runge- 

Kutta schemes (SLASIRK), we have carried out 

linear ITG simulations of a helical plasma. 

Physical and numerical settings are the same as 

those for the inward-shifted LHD case shown in 

Ref. [1]. 

 The linear growth rates and the real frequencies 

are plotted as a function of the poloidal wave 

number ky in Fig. 2. The results agree well with 

the results obtained by using the fourth-order 

Runge-Kutta-Gill scheme (RKG), while taking the 

time step size larger than that of RKG. The 

presented  numerical method gives sufficiently 

accurate results for t/ttr<0.4, which is comparable 

to the transit time of passing particles through one 

helical ripple. 
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Fig 1. (a) Contour lines of the particle kinetic energy mv||
2
/2+B with the helical field, and (b)-(d) 

 Snapshots of equi-contours of the distribution function f(z,v||) in parallel phase space (where 

 B0/Ti = 4.0). Horizontal and vertical axes are defined by z and v||, respectively. 

Fig. 2. (a) Linear growth rates l and (b) real frequencies r as a function of the poloidal wave  

number kyti. The solid, dashed and dotted lines represent the results obtained by RKG 

with t/ttr = 0.005 and SLASIRK with t/ttr = 0.1, 0.4, respectively. 
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