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The standard gyrokinetic model, which is originally formulated for perturbations with short wavelength 
and small amplitude, is not always valid in the long wavelength regime. The reduced (gyrokinetic) Poisson 
equation or the gyrokinetic quasi-neutrality condition in the standard model is no longer sufficient to obtain 
electrostatic potential in the long wavelength regime. Since the polarization term including the electrostatic 
potential goes to higher order, the other higher order terms which are not considered in the standard model 
are needed to obtain the electrostatic potential. Taking into account a higher order displacement vector 
associated with the guiding-center transformation, we find additional higher order terms coming from 
nonuniformity of magnetic field in the gyrokinetic Poisson equation and the quasi-neutrality condition. 

 
 
1. Introduction 

Control of anomalous transport is one of very 
important issues in magnetized fusion plasma 
research. For this purpose, it is indispensable to 
clarify mechanism of formation of transport 
barriers [1]. It is believed that drift wave type 
microturbulence driven by density and/or 
temperature gradient is a principal cause of the 
anomalous transport [2]. Since spatiotemporal 
scale of the drift wave turbulence is small 
compared to that of background profiles 
including mean flow, it leads to separate 
treatment of the drift wave turbulence and 
evolution of the background profiles. However, 
global simulation handling both the turbulence 
and the profile evolution is necessary for ultimate 
understanding of the formation of transport 
barriers. The standard gyrokinetic model is 
formulated for investigation of the drift wave 
turbulence, and perturbations with short 
wavelength ( ߩୄ݇ ∼ 1 ) and small amplitude 
(݁߮ ܶ⁄ ≪ 1) (gyrokinetic ordering) are assumed in 
the formulation of the gyrokinetic model [3-5]. 
Therefore, there is no guarantee that the standard 
gyrokinetic model is valid in the long wavelength 
regime as well. Although it was claimed that the 
standard gyrokinetic model would be also valid in 
the long wavelength by reinterpretation of the 

gyrokinetic ordering [6], it was reported later that 
the standard gyrokinetic model is not necessarily 
sufficient in the long wavelength regime [7]. We 
investigate this issue from a point of view of 
push-forward representation associated with 
phase space transformation [8,9] and show that 
additional terms stemming from nonuniformity of 
magnetic field would be important in gyrokinetic 
quasi-neutrality condition in the long wavelength 
regime. 

 
2. Gyrokinetic model 

Modern formulation of the gyrokinetic model is 
based on the phase space Lagrangian Lie-transform 
perturbation method [10] and consists of two-step 
phase space transformation from the particle phase 
space to the gyro-center phase space [4-5]. In the 
first step the gyro-phase dependence of a gyrating 
particle in equilibrium magnetic field is removed by 
the phase space transformation from the particle 
phase space to the guiding-center phase space 
(guiding-center transformation) [11]. Smallness 
parameter of the guiding-center transformation is 
߳ ∼ ߩ ⁄ܮ ≪ 1 where ߩ is the Larmor radius of a 
particle and L is the scale length of the magnetic 
field. After the first step time-dependent 
electromagnetic perturbations are introduced into 
the system and the gyro-phase angle dependence 
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reintroduced with the perturbations is removed by 
the transformation from the guiding-center phase 
space to the gyro-center phase space (gyro-center 
transformation). Here smallness parameter is 
߳ఋ ∼ ݁߮ ܶ⁄ ≪ 1. As mentioned in Introduction, the 
standard gyrokinetic model is originally constructed 
under the gyrokinetic ordering ( ߩୄ݇ ∼ 1 , 
݁߮ ܶ⁄ ≪ 1). This condition can be interpreted as 
߮݁ߩୄ݇ ܶ⁄ ≪ 1 which means that the EൈB drift 
velocity is much slower than the thermal velocity. 
The slow flow condition is also satisfied in the long 
wavelength regime (݇ୄߩ ≪ 1 , ݁߮ ܶ⁄ ~1 ). This 
reinterpretation of the ordering seems to be no 
problem in the phase space transformation for the 
single particle dynamics and in the gyrokinetic 
Vlasov equation. The change of the ordering, 
however, has an effect on the polarization term 
including ߮  in the gyrokinetic quasi-neutrality 
condition (and the gyrokinetic Poisson equation) 

݊ ൌ ഥܰ  ݊ሺ߁ െ 1ሻ
݁߮

ܶ
. 

In the equation the ion particle density is expressed 
in terms of the gyro-center variables and it is called 
the push-forward representation of particle density. 
The representation depends on details of the 
guiding-center and gyro-center transformations: 

ܠ ൌ ഥ܆  ഥ࣋߳  ߳ఋ߳࣋ഥ୷  ߳ଶ࣋ഥ ⋯. 
The polarization term comes from the gyro-center 
displacement vector ࣋ഥ୷ associated with the 
gyro-center transformation at ܱሺ߳߳ఋሻ. In the long 
wavelength regime the polarization term goes to 
higher order than the standard gyrokinetic case. 
Hence, we have to take into account the other 
higher order terms to obtain long wavelength 
component of the electrostatic potential. Then, we 
have to consider another displacement vector 
associated with the guiding-center transformation 
 ഥ as well [9, 12]. This piece is not considered in࣋
the standard model. 

 
3. Higher order displacement vector 

The guiding-center transformation of particle 
position x is written in general as 

ܠ	 ൌ ܆ െ ଵܩ߳
܆ െ ߳ଶ ൬ܩଶ

܆ െ
1
2
۵ଵ ∙ ଵܩ܌

൰܆  ⋯, 

where ۵ is the nth-order vector field generating 
the guiding-center transformation and ۵ ∙ ܌ ൌ
ܩ

߲ . Negative of 1ܩ

܆  is the usual gyroradius 
vector. We denote the second order piece as  

࣋ ൌ െ൬ܩଶ
܆ െ

1
2
۵ଵ ∙ ଵܩ܌

 .൰܆

Since explicit forms of ۵  and ࣋  are very 
complicated [11, 13], they are not shown here. 
Considering ࣋, we obtain additional terms in the 

push-forward representation of particle density, 
therefore, in the gyrokinetic quasi-neutrality 
condition: 

	െන݀6܈ഥ3ߜ൫܆ഥ െ ൯સܚ ∙ ൿܤഥ࣋ഥൻܨഥ൯܈൫ܬ , 

where 〈∙〉  denotes gyro-phase average. The 
gyro-phase angle average of ࣋ is important for 
the quasi-neutrality condition and is given by 

ഥۧ࣋ۦ ൌ െ ቈ
ܤߤ
ଶߗ݉

1
2
൫સ ∙ ܾ൯ ܾ 

ܷଶ

ଶߗ
ܾ ∙ સ ܾ


3
2
ܤߤ
ଶߗ݉

સୄlogܤ . 

A similar result is found in Ref. [12] in which the 
first term is missing. Although the first term can be 
neglected in some cases, it may be important in 
tokamaks with relatively large ripples of the 
toroidal magnetic field. The second term is 
common to the result in Ref. [12], while the 
coefficient in front of the last term is not. Effects of 
the additional terms on electrostatic potential will 
be investigated in future. 
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