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Numerical analysis of axisymmetric toroidal equilibria with flow is performed based on single-fluid and 
two-fluid magnetohydrodynamic (MHD) models. Effects of toroidal and poloidal flow comparable to the 
poloidal sound velocity, two-fluid, ion finite Larmor radius (FLR), pressure anisotropy and parallel heat 
fluxes on high-beta toroidal equilibrium is studied by solving reduced MHD equilibrium equations. Higher 
order terms of quantities like the pressures and the stream functions show the shift of their isosurfaces from 
the magnetic surfaces due to effects of flow, two-fluid and pressure anisotropy. 

 
 
1. Introduction 
 We investigate small scale effects on equilibrium 
with flow based on reduced magnetohydrodynamic 
(MHD) models. At the sharp boundary of a 
well-confined region in magnetically confined 
plasmas where high-beta is achieved by shear-flow 
suppression of instability and turbulent transport, 
small-scale effects cannot be neglected. A reduced 
set of Grad-Shafranov (GS) type equilibrium 
equations for high-beta tokamaks with flow 
comparable to the poloidal sound velocity, ion 
finite Larmor radius (FLR), pressure anisotropy and 
parallel heat fluxes on high-beta tokamaks 
equilibrium has been derived from the fluid 
moment equations for collisionless, magnetized 
plasmas [1]. We show the results of numerical 
solutions of the reduced GS equations by means of 
the finite element method. The two-fluid effects 
induce the diamagnetic flows, which result in 
asymmetry of the equilibria with respect to the sign 
of the E×B flow. Higher order terms of quantities 
like the pressures and the stream functions show the 
shift of their isosurfaces from the magnetic surfaces 
due to effects of flow, two-fluid and pressure 
anisotropy. 
 
2. Equilibrium Equations 
 The reduced set of equilibrium equations are 
derived from the fluid moment equations for 
collisionless, magnetized plasmas with the 
slow-dynamics (drift) ordering [2] by the 
asymptotic expansions for large aspect ratio, 
high-beta tokamaks with poloidal sonic flow. The 
FLR effects appear as the gyroviscosity and the 
perpendicular (diamagnetic) heat fluxes in the fluid 
moment equations. The equilibrium equations 
consist of the first two orders of the 

Grad-Shafranov (GS) equation of which the first 
order is same as that for static equilibria [1], 
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includes contributions from the E×B and the ion 
diamagnetic poloidal flows with the gyroviscous 
cancellation and the pressure anisotropy. The 
coefficients C…(ψ1) are obtained by solving the 
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equations for the higher-order quantities as 
functionals of the lowest order quantities while 
those in the second terms, denoted by ‘*’, are 
arbitrary functions of ψ1. The pressure and other 
quantities are determined once Eqs. (1) and (2) are 
solved. This set of equilibrium equations is an 
extension of previous models [3,4] to include 
pressure anisotropy with parallel heat flux. The GS 
equation for ψ1, (1), is same as for the single-fluid, 
static case. In spite of its complexity, the GS 
equation for ψ2, (2), is a linear, elliptic partial 
differential equation once the solution for ψ1 of (1) 
is substituted and, thus, is easy to solve. However, 
singularity in the GS equation for ψ2 occurs when 
the poloidal flow velocity equals the poloidal sound 
velocities. It arises because higher order terms not 
negligible in its vicinity are ordered out in the 
asymptotic expansions. The present model is to 
study the extension of regular, elliptic solution for 
single-fluid MHD equilibria with flow. One has to 
choose the profiles of free functions that do not 
include the vicinity of singularity to get regular 
solutions. 
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Fig. 1. Radial profiles in the midplane obtained from 
numerical solutions for the FLR two-fluid model. The 
solid (dashed) lines show the case where the poloidal 

directions of the E×B and the ion diamagnetic flows are 
the same (opposite). 

3. Numerical Solutions 
 The reduced GS equations are solved numerically 
by means of the finite element method. The circular 
cross-section, the fixed boundary condition at the 
normalized minor radius r=1 and the up-down 
symmetry are assumed. Figure 1 shows the radial 
profiles at the midplane of (a) the magnetic flux ψ, 
(b) the total pressure p, (c) the ion stream function 
Ψ and (d) the parallel and perpendicular pressures 
for ions and electrons. The two-fluid effects induce 
the diamagnetic flows, which result in asymmetry 
of the equilibria with respect to the sign of the E×B 
flow. Higher order terms of quantities like the 
pressures and the stream functions show the shift of 
their isosurfaces from the magnetic surfaces due to 
effects of flow, two-fluid and pressure anisotropy. 
The parallel and perpendicular components of the 
pressures for ions and electrons [Fig. 1 (d)] are 
self-consistently determined and show their peaks 
in different positions from those of the magnetic 
flux and each other. The shift of the isosurfaces of 
the ion stream function from the magnetic flux is 
caused by the breaking of the frozen-in condition 
due to the two-fluid effect. However, we have 
found that it also depends on the FLR effect. Figure 
2 shows that these shifts in the FLR two-fluid and 
the Hall MHD models are in opposite radial 
directions.  
 

-1 -0.5  0  0.5  1
-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

-1 -0.5  0  0.5  1
-1

-0.5

 0

 0.5

 1

x x

Z

(a) (b)

 
 

Fig. 2. Profiles of (∇ψ ×∇Ψ)⋅(R∇ϕ) in the poloidal 
cross-section for (a) the FLR two-fluid and (b) the Hall 

MHD models. This quantity is always zero in the 
single-fluid MHD model since Ψ= Ψ(ψ). 
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