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Analysis of plasma rotation effects on ballooning stability
in magnetospheric plasma confinement

磁気圏型プラズマ閉じ込めのバルーニング安定性に対する流れの効果の分析

Masaru Furukawa
古川　勝

Grad. Sch. Frontier Sci., Univ. Tokyo, Kashiwa-shi, Chiba 277-8561, Japan
東京大学　大学院新領域創成科学研究科　〒 277-8561　千葉県柏市柏の葉 5－ 1－ 5

Magnetohydrodynamics ballooning mode stability of magnetospheric plasma configuration is stud-
ied via time-dependent eikonal formulation. Plasma rotation effects on the ballooning mode sta-
bility can be categorized into four: (i) change of equilibrium which enters the ballooning equation
through the metric elements, (ii) new self-adjoint terms in the ballooning equation originating
from plasma rotation, (iii) time varying wave number due to rotation shear and (iv) non-self-
adjoint terms including first-order time derivative. (i) and (ii) modifies the instability growth rate
in the order square of Mach number, rotation speed divided by thermal speed. (iii) leads to stabi-
lization after long time similar to slab geometry, not in a sense of time average as tokamak case.
(iv) partly works like friction.

1. Introduction
Plasma confinement by magnetospheric con-

figuration was proposed to achieve advanced fuel
nuclear fusion[1], and has been studied in labo-
ratories toward the goal[2,3]. Since these experi-
mental devices have only poloidal magnetic field,
pressure-driven magnetohydrodynamics (MHD)
instabilities might occur. Thus the MHD sta-
bility was studied for limiter [4] and separa-
trix configurations[5]. The separatrix was shown
to have stabilizing effect because of its big
flux expansion[5]. These studies assumed static
plasma equilibria. If a plasma is rotating, the
pressure-driven instability is affected consider-
ably. For example, rotation shear stabilizes bal-
looning mode[6,7] in tokamaks on time average[8-
11]. The stabilization occurs due to energy trans-
fer from unstable to stable modes[11].

These studies mainly focused on plasma rota-
tion shear. However, the magnitude of the rota-
tion can also play a role. In the present paper, we
study how to categorize the plasma rotation ef-
fects on ballooning instabilities by examining the
governing equation. We also point out an impor-
tant difference between the magnetospheric con-
figuration and tokamaks. The conclusions given
below have been verified by numerical simula-
tions, which will be presented elsewhere.

2. Examination of governing equation
We consider a magnetospheric, axisymmet-

ric plasma with only poloidal magnetic field and

toroidal rotation. The equilibrium is described
by the Grad–Shafranov equation including the
toroidal rotation[12],
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Note that all quantities are normalized by their
typical values in this paper. The equilibrium
magnetic field is expressed by B = ∇ψ × ∇φ,
where φ is the toroidal angle. The equilibrium
toroidal rotation speed is given by RΩ(ψ). The
ratio of plasma pressure to magnetic pressure
is denoted by β0 := 2µ0p0/B2

0 , where p0 and
B0 are typical values of pressure and magnetic
field, respectively. The pressure takes the form
p = p̄(ψ) exp[M2

0 Ω2(ψ)(R2/R2
c − 1)] when the

temperature T is constant on each magnetic sur-
face. Here M0 := RcΩ0/

√
2T (ψ)/mi is the Mach

number based on thermal velocity of ions. The
ion mass is mi, Rc is the major radius of the in-
ternal ring current, and Ω0 is the typical value
of toroidal rotation frequency. The plasma rota-
tion changes the source term of Eq. (1) and thus
the solution ψ too. The change of the equilib-
rium, or the metric elements equivalently, enters
the ballooning equation explained below through
the change of its coefficients. Assuming M2

0 ¿ 1,
we may expand the source term and obtain
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where the prime denotes ψ derivative. Since the
source term changes in O(M2

0 ), the metric ele-
ments also change in O(M2

0 ).
Next we examine the linearized ideal MHD

equation including equilibrium plasma flow[13]:

ρ
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Ff := (∇× B̃) × B + (∇× B) × B̃

+
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where ρ and v are equilibrium mass density and
flow velocity, respectively. The specific heat ratio
is Γ. A displacement of the plasma element from
the equilibrium trajectory is ξ, defined via a per-
turbed flow velocity ṽ =: ∂ξ/∂t+v ·∇ξ+ξ ·∇v.
A perturbed magnetic field is given by B̃ :=
∇×(ξ×B). The Alfvén Mach number is defined
by MA := Ω0τA with τA := L/(B0/

√
µ0ρ) and L

a typical length. While the second term of the
l.h.s. of Eq. (3) introduces anti-self-adjointness,
the r.h.s. of Eq. (3), a generalization of the MHD
force operator[14], is still self-adjoint even includ-
ing the new terms of rotation v. The ratio of the
rotation term to the pressure term is roughly M2

0

by the relation M2
A = β0M

2
0 . Thus we expect an

O(M2
0 ) modification of growth rate for pressure-

driven instabilities by the new terms, which is
the same order as the equilibrium change.

For ballooning modes, we adopt the eikonal
formulation based on a large toroidal mode num-
ber n[6,7]. Using n À 1, we express ξ =∑

j

(
n−j ξ̂

(j)
)

ei nS , where ξ̂
(j)

represents an en-
velope and S is an eikonal. We assume B·∇S = 0
and ∂S/∂t + v · ∇S = 0 for the eikonal[8-11], to
obtain S = −φ + MAΩ(ψ)t + S0(ψ). The wave
vector then becomes k̂ := ∇S = −∇φ + k̃ψ∇ψ,
and the radial wave number is given by

k̃ψ = MAΩ′t + kψ0, kψ0 := S′
0. (5)

The t dependence of k̃ψ expresses the stretch
of wave in time by rotation shear. The rota-
tion shear determines the time scale of k̃ψ vari-
ation as (MAΩ′)−1. Note that this k̂ does not
have dynamical lattice symmetry[9] as in toka-
mak case, leading to similar behavior as in slab
geometry[15]. Collecting terms at each order in

n, we obtain ξ̂
(0)

= ξ‖B + ξ⊥B × k̂/B2 and the
coupled wave equations for x = (ξ‖, ξ⊥)T, called
the ballooning equation. Although the explicit
representation of the equation will be presented

elsewhere, the abstract form is as follows:
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where Mjs and L are matrices of operators. The
l.h.s. (r.h.s.) of Eq. (6) comes from the l.h.s.
(r.h.s.) of Eq. (3). The M1 term yields an effect
analogous to friction[16]. The operator L has
O(M2

0 ) terms as similar to Ff . Most important
point is that these operators include t through
k̂; Eq. (6) is non-autonomous. However, if we
consider t just as a parameter, we find that L is
still self-adjoint. Thus we may be able to utilize
the spectral decomposition of L at each instance
to analyze the solution of Eq. (6). If the time
scale of the dynamics is much faster than that of
k̃ψ variation, the wave evolves as an eigenmode
of L at each instance.
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