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 Tokamak showed an excellent plasma confinement capability with its symmetry but has intrinsic drawback with its 
pulsed operation with inductive operation. Efforts have been made in these 20 years to realize steady state operation 
best utilizing bootstrap current. In this review, progresses of understanding of tokamak physics related to steady state 
operation are reviewed to cope into the scientific feasibility of steady state tokamak fusion power system. 

 
Fig. 1 Flow physics in the steady state tokamak reactor (From lecture in POSTECH, Oct. 5) 

( Blue :feedforward, Orange: feedback, dotted green : region of flow physics) 
 

1. Introduction 
  The tokamak is a front-runner in fusion research, 
which is the reason why the tokamak concept is selected 
for ITER. The tokamak has geometrical symmetry in the 
toroidal direction, which provides robustness in keeping 
nested flux surface against various parametrical changes 
[1] and good confinement leading to the achievement of 
equivalent break-even condition in large tokamaks such 
as JT-60U[2] and JET[3], and significant DT fusion 
power production in TFTR and JET[4]. While tokamak 
shows such superiority in plasma confinement, this 
symmetry is created by inducing the current in the high 
temperature plasma through transformer action [5]. 
Therefore, the operation of the reactor becomes pulsed if 
we can not develop efficient non-inductive methods to 
sustain plasma current. Since present power sources such 
as oil/coal/natural gas fired plants, fission plants operate 
continuously, it is highly desirable for tokamak reactor to 
be a steady-state power station. Review of non-inductive 
current drive methods shows needs for large power to 

sustain large plasma current for the reactor [6]. Nature 
blesses human being by providing an intriguing physical 
process, called bootstrap current to realize efficient 
steady state operation of the tokamak[7]. Utilization of 
bootstrap current is fundamental for the efficient steady 
state operation of tokamak reactor[8],[9]. Since then, 
extensive research initiatives to advance tokamak 
physics relevant for steady state operation has been 
started in tokamak researches such as JT-60U[10] and 
DIII-D[11] and called advanced tokamak research. 
Extensive experimental and theoretical works have been 
done for last two decades. In this presentation, brief 
introduction of magnetic confinement, the Steady State 
Tokamak Reactor, advanced tokamak operating regimes, 
collisional parallel transport in tokamak essential and 
critical for the steady state operation, ideal, resistive and 
kinetic MHD instabilities related to high bootstrap 
current fraction and the steady state are described. The 
transport properties in advanced tokamak regimes will be 
described as well [12], [13]. 
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  The inter-linkage of physics of steady state 
tokamak research is given in Fig.1 stressing role of 
flows on magnetic surface in tokamak physics. 
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