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Fully-implicit MHD Simulation Using Nonconforming Vector
Finite Elements

非適合型ベクトル有限要素法による陰的MHDシミュレーション
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A novel vector finite element method is proposed to ensure that vector variables in the MHD
equations satisfy the divergence-free and the curl-free constraints exactly in a general coordinate
system. The method called ’Nonconforming Vector Finite Element Method’ were implemented in
a single-fluid resistive MHD code and validations were performed.

1 Introduction
For long time simulations of MHD instabili-

ties, it is essential to use a scheme satisfying the
divergence-free constraint on the magnetic field
(∇ · b = 0). Another constraint is also impor-
tant for the analysis of MHD modes close to the
marginal stability. Fluid is nearly incompressible
and necessary to satisfy the condition ∇ · v ∼ 0
below the marginal stability. These constraints
are quite important because unphysical spurious
modes emerge and interact with physical modes
as violation of such a constraint. In this paper,
we propose a novel finite element method to en-
sure that vector variables in the MHD equations
satisfy the divergence-free and the curl-free con-
straints exactly in a general coordinate system.
The method, named ’Nonconforming Vector Fi-
nite Element Method’, consists of two ideas. The
first idea is that different types of formulations
(basis functions) are used to describe covariant
and contravariant components of a vector. A ba-
sis function of a covariant vector is determined
in accordance with the discrete ’curl’ operator,
and that of a contravariant vector is in accor-
dance with the discrete ’divergence’ operator to
ensure both div-curl and curl-grad operators are
identically zero. Since the basis function is dif-
ferent among covariant and contravariant com-
ponents, transform between them is not defined
by the local metric tensor. Therefore, we intro-
duce the second idea that the equation of the

covariant-contravariant metric transformation is
substituted into the weak form in which norm
conserving condition is imposed. We call this
method ’nonconforming’ in the same manner as
in FEM theory. The proposed formulation were
implemented in a single-fluid resistive MHD code
and validations were performed.

2 Simulation Model

2.1 Nonconforming Vector Finite Element For-
mulation

We focus attention in this study on the cylin-
drical tokamak. Vector variables in the MHD
equations are represented as a combination of
radial basis functions. We adopt different basis
functions for each component of a covariant vec-
tor (aµ for µ= s, θ, ϕ) and a contravariant vector
(Aµ),
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where ej(s) is the linear finite element and
cj−1/2(s) is the piecewise constant element. Such
a formulation makes the divergence-free and the
curl-free constraints satisfiable everywhere.

2.2 Fully Implicit Method
Explicit time stepping schemes are computa-

tionally expensive for the free boundary simula-
tion in which functions have a fairly robust pro-
file through the plasma surface. Fully implicit
approach is more appropriate, and the backward
differentiation (BDF) algorithm is implemented
in this work for the linear MHD stability analy-
sis.

3 Simulation Results
Numerical simulations of MHD instabilities are

carried out to check the validity of our code. The
mode structure and growth rate are confirmed to
be consistent with that obtained from the linear
MHD eigenvalue solver using the conventional
FEM formulation in Ref. [1] as shown in Fig. 1.
The divergence constraint of the magnetic field,
∇ · b= 0, is examined during the mode growth.
The measurement in Fig. 2 indicates that it is
satisfied with an error of only ∼10−12 due to the
discretization of the spatial derivatives. Another
divergence constraint is examined for the velocity
field in Fig. 3. The incompressibility condition,
∇·v=0, is violated around the resonant surface
position, but its amplitude tends towards zero as
Suydam index parameter is varied towards the
marginal stability limit.
In the free boundary simulation by using the

pseudo-vacuum model [2], the vacuum is mod-
eled as a highly resistive, low density plasma, and
the density and resistivity profiles have a steep
gradient at the plasma surface. Fully-implicit
method allows the use of as large time steps as
Alfven time scale given by the core plasma pa-
rameters even when the simulation is run with
the pseudo-vacuum model. It is verified that the
simulation with the density ratio of 1/100 and
the resistivity ratio of 106 does not fail.
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Fig. 1: The radial profile of the m/n=2/1 Suydam mode.
The resonant surface, q=2, is located at s=0.5, where the
Suydam index D=0.588. 500 radial grid points are used
and the amplitude is normalized by the norm ⟨v,v⟩1/2.
The growth rate −5.632×10−3 for the ideal MHD param-
eter case is shown to be consistent with −5.858 × 10−3

obtained from the ideal MHD eigenvalue code.
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Fig. 2: The radial profile of the divergence of the mag-
netic field (upper fig.) and the temporal variation of their
norm(lower fig.) for two different cases of grid points(N).
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Fig. 3: The radial profile of the divergence of the flow ve-
locity. The incompressibility condition is violated around
the resonant surface position, s=0.5, but the amplitude
tends towards zero as Suydam index parameter(D) is var-
ied towards 1/4, i.e., Suydam criterion.


