Evaluation of MHD stability of weak shear configuration in LHD plasma

大型ヘリカル装置LHDにおける弱磁気シア配位でのMHD安定性の評価

<u>Masaaki Okamoto</u>, Kiyomasa Watanabe¹, Satoru Sakakibara¹, Satoshi Ohdachi¹, Yoshiro Narushima¹, Mikiro Yoshinuma¹, Katsumi Ida¹, Yoshihide Shibata², Noriyasu Ohno² <u>岡本征晃</u>, 渡邊清政¹, 榊原悟¹, 大舘暁¹, 成嶋吉朗¹, 吉沼幹朗¹, 居田克巳¹, 柴田欣秀², 大野哲靖²

 Ishikawa National College Technology, Kitachujo, Tsubata, Kahoku-gun, Ishikawa, 929-0392 JAPAN

 石川工業高等専門学校, 〒929-0392 石川県河北郡津幡町北中条タ1

 ¹National Institute for Fision Science, Oroshi-cho, Toki, Gihu 509-5292, Japan

 ¹自然科学研究機構 核融合科学研究所, 〒509-5292 岐阜県土岐市下石町322-6

 ²Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan

 ²名古屋大学工学研究科, 〒464-8603 名古屋市千種区不老町

In Large Helical Device (LHD) experiments, the beta collapse phenomenon has been occurred by magneto-hydro dynamics (MHD) instability in the week shear configuration. We have evaluated the Mercier parameter about two discharges, which are with and without the beta collapse in the week shear configuration. The evaluation of the Mercier parameter is used the pressure and rotational transform profiles measured by Thomson scattering system and motional Stark effect diagnostic, respectively. We will clarify the threshold of the beta limit by the evaluation of the Mercier parameter.

1. Introduction

In toroidal magnetic confinement devices, the increase of the plasma beta value is one of the important issues for the achievement of the nuclear fusion plant. The plasma beta is limited by the plasma current and/or pressure driven MHD instabilities. The minor collapse and disruption are occurred by MHD instabilities in tokamak plasmas. In the LHD (one of the typical helical device) experiments, the beta collapse phenomenon has been also observed by MHD instability in the week shear configuration. This study's purpose is to clarify the threshold of the beta limit by the evaluation of the Mercier parameter D_I .

In this study, we have calculated the equilibrium of LHD plasmas with and without the beta collapse by using VMEC code [1]. We had already calculated the equilibrium by using the plasma pressure, which is measured by Thomson scattering system, and the rotational transform $t/2\pi$ profile assumed as uniform, parabolic and hollow current density profile. However the estimated D_I had large scatter. So, it was found that the current density profile is important in order to precisely estimate D_I . Therefore, it is used for the calculation of the equilibrium that $t/2\pi$ profile was measured by motional Stark effect (MSE) diagnostic.

2. β collapse in week shear configuration

In order to form the week shear configuration,

Fig.1. Time evolution of (a) the port through power of NBI, (b) ratio of plasma current I_p and toroidal magnetic field B_t , and (c) volume averaged beta $\langle \beta_{dia} \rangle$ measured by a diamagnetic loop.

the plasma current is necessary in the LHD configuration. The plasma current I_p was generated by unbalanced Neutral Beam (NB) injection. For example, over 100 kA of plasma current was observed by unbalanced NB injection in LHD device [2]. Figure 1 shows the temporal evolution of the port through power of NBI, ratio of I_p and toroidal magnetic field B_t and voluve averaged beta $\langle \beta_{dia} \rangle$ measured by a diamagnetic loop. Because a

Fig.2. Profiles of rotational transform $t/2\pi$ and Mercier parameter D_I of discharge (a) with collapse and (b) without collapse. Rotational transform profiles are measured by MSE diagnostic and calculated by the polynomial fitting of plasma current profile.

neon gas puff is applied at the discharge of #105387 to increase the ramp-up rate of I_p , the beta collapse is occurred at about t = 4.17 sec, $I_p/B_t = 37.2$ kA/T, and $\langle \beta_{\text{dia}} \rangle = 1.29$ %. On the other hand, the I_p ramp-up rate of the discharge of #105390 is smaller than the rate of discharge with Ne gas puff. So, the discharge of #105390 cannot be observed the beta collapse. After t = 4.5 sec, $\langle \beta_{\text{dia}} \rangle$ is decreased with the electron density because hydrogen gas, which is the main discharge gas, puff is terminated at t = 4.5sec.

3. Calculation of equilibrium

Figure 2 shows profiles of $t/2\pi$ and D_I . In Fig.2 (a), opened circles indicate $\iota/2\pi$ profile measured by MSE diagnostic, which has time resolution of 0.3 sec, at t = 3.9 sec. At t = 3.9 sec, the plasma parameter is as follows, $\langle \beta_{dia} \rangle = 1.40$ % and $I_p/B_t =$ 28.2 kA/T. The fitting curve is $\iota/2\pi$ profile calculated by the polynomial fitting of plasma current profile. The curve of D_I is evaluated by the measured pressure profile and fitting curve of $l/2\pi$. In Fig.2 (b), it shows profiles of $t/2\pi$ and D_I at t =4.5 sec. At t = 4.5 sec, the plasma parameter is as follows, $<\beta_{dia}> = 1.34$ % and $I_p/B_t = 28.8$ kA/T. From the measurement of $l/2\pi$ profile, it is found that magnetic shear of #105390 is larger than the shear of #105387 around the resonant surface of m/n = 1/1 (m and n are the poloidal and toroidal mode number, respectively). And it is found that the D_I of #105390 is smaller than D_I of #105387 around the m/n = 1/1 surface. These results are indicated that the discharge of #105387 is more unstable than #105390 and it is consistent with the experimental result of Fig. 1.

4. Summary

We indicate that D_I could be evaluated at LHD plasma with and without the beta collapse by using MSE diagnostic. The result is obtained that D_I of the discharge with collapse is larger than D_I of the discharge without collapse. As the future works, we will evaluate the D_I of other discharges and clarify the threshold of the beta limit by the D_I .

References

- S.P. Hirshman, W.I. Van Rije and P. Merkel, Comput. Phys. Commun. 43 (1986) 143.
- [2] K.Y. Watanabe, et al., Controlled Fusion and Plasma Physics 24B (2000) 1316.