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In order to describe the behavior of tokamak plasmas in both core and peripheral regions self-
consistently, two-dimensional transport modeling is desirable and becoming feasible. In the present
study, we have formulated more rigorous transport equations with poloidal-angle dependence from
Braginskii’s equations for two-dimensional transport analysis. The set of equations is composed
of continuity equation, equation for velocity including the neoclassical viscosity, and equation for
energy transport for each species. Preliminary numerical results of two-dimensional transport
analysis will be presented.

1 Introduction

In most of conventional core transport sim-
ulations in tokamaks, the particle density and
the temperature are assumed to be almost con-
stant on a magnetic surface, and flux-averaging
method is employed to describe transport phe-
nomena as a one-dimensional problem, since the
transport along the field line is very fast. On
the other hand, transport in a peripheral SOL-
divertor plasma is usually described as a two-
dimensional problem with simplified transport
models and plasma flow, for example SOLDOR
[1] and B2.5 [2], since variation of quantities
along the field line is large and important to
understand transport process in peripheral re-
gion. Recent remarkable progress in computa-
tional resources, however, has made more rigor-
ous two-dimensional simulation of tokamak plas-
mas feasible. In the present study, we formulate a
set of two-dimensional transport equations with
the neoclassical viscosity [3] in magnetic flux co-
ordinate system (MFCS) (ξ1, ξ2, ξ3) = (ρ,χ, ζ)
from Braginskii’s equations [4] to develop an
integrated two-dimensional transport simulation
code for the entire tokamak plasmas including
both core and peripheral plasmas.

2 Assumptions

In the present study, the following four as-

sumptions have been made to derive the trans-
port equations. The first is that the plasma has
toroidal axisymmetry, which means that all phys-
ical quantities are independent of the toroidal
angle variable. The second is that the quan-
tities related to MHD equilibrium depend only
on the flux label ρ; the poloidal flux function
ψ, the toroidal flux function ψT, the toroidal
current function I, the electrostatic potential φ,
the total plasma pressure p, and the rotational
transform !ι. This assumption makes it possible
to reduce the magnetic equilibrium problem to
two-dimensional. The third is that phenomena
with the Alfvén time scale are much faster than
the relaxation process such as diffusion of mag-
netic field and transport phenomena, which im-
plies that the MHD equilibrium is attained much
faster than the relaxation processes. Finally, the
fourth is that the time derivatives of basis vec-
tors are small enough to be ignored for simplicity
when we take the time derivative of vector quan-
tities.

3 Modeling of transport equations

The transport equations are derived from Bra-
ginskii’s equations [4] and consist of the equa-
tion for particle density, momentum, and energy
transport for both electron and ion in MFCS.
The equation for particle density is the equation
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of continuity of Braginskii’s equations.
The equation for momentum is derived from

equation of motion of Braginskii’s equation. For
the compatibility with the neoclassical transport
theory [3], we take three components of vec-
tor quantities (ξN1 , ξN2 , ξN3 ) = (ρ, ‖, ζ), which in-
dicates the radial direction, the field line di-
rection and the toroidal direction respectively,
(eξN

1 , eξN
2 , eξN

3 ) = (∇ρ,B/B,∇ζ). And we as-
sume that the force balance is attained in the ra-
dial and toroidal direction in the transport time
scale. Therefore, taking the scalar product of the
equation of motion and eξN

i , we obtain equations
for momentum in each direction as follows.
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3. toroidal direction
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where F kin,i
a , gij , √g, N neo

a , CLor,i
a and C kin,i

a are the
contravariant component of kinetic stress force,
the contravariant metric tensor, Jacobian, quan-
tity from the neoclassical viscosity force, the co-
efficient of Lorentz force term and the coefficient
of kinetic stress force in MFCS respectively.

The equation for energy transport is obtained
by transforming Braginskii’s equation for energy
transport into the advection-diffusion form
3
2
∂pa

∂t
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(
paupa − na
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χa ·∇Ta

)
+ Qpa (4)

where upa ≡ 5
2ua + p−1

a qua
is the energy flow ve-

locity, Qpa ≡ 3
2TaSa +ua · +∇pa −

↔
πa ·∇ ·ua +Qa

the energy source, and
↔
χa the diffusion tensor.

The set of transport equations is coupled with
a set of equations for electromagnetic field in
order to develop an integrated two-dimensional
transport simulation code. The set of electro-
magnetic equations consists of Grad-Shaftranov
equation, magnetic diffusion equation [5], and
Poisson equation for static electric field. The two
sets of equations are reduced to two-dimensional
with axisymmetry and the finite element method
is used to discretize the differential equations.

4 Preliminary simulation results
We will present preliminary numerical results

of two-dimensional transport analysis, which we
employ toroidal coordinate system (-, θ,ϕ) in-
stead of magnetic flux coordinate system.
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