Density modulation experiment in Heliotron-J ECH plasma

ヘリオトロンJにおけるECHプラズマでの密度変調実験

<u>Kiyofumi Mukai</u>¹, Kazunobu Nagasaki², Tohru Mizuuchi², Vladimir Zhuravlev³, Kenji Tanaka⁴, Takashi Minami², Hiroyuki Okada², Shinji Kobayashi², Satoshi Yamamoto², Yuji Nakamura¹, Kiyoshi Hanatani², Shinsuke Ohshima⁵, Koji Mizuno¹, Hyunyong Lee¹, Linge Zang¹, Shohei Arai¹, Tasuku Kagawa¹, Takayuki Minami¹, Hiroaki Yashiro¹, Hiroto Watada¹, Yoshinobu Wada¹, Shigeru Konoshima², Fumimichi Sano²

<u>向井清史</u>¹, 長崎百伸², 水内亨², V. Zhuravlev³, 田中謙治⁴, 南貴司², 岡田浩之², 小林進二², 山本聡², 中村祐司¹, 花谷清², 大島慎介⁵, 水野浩志¹, H.Y. Lee¹, L. Zang¹, 荒井翔平¹, 香川輔¹, 南貴之¹, 八代浩彰¹, 和多田泰士¹, 和田善信¹, 木島滋², 佐野史道²

¹Graduate School of Energy Science, Kyoto University, Gokasho, Uji, 611-0011, Japan 京都大学エネルギー科学研究科 〒611-0011 京都府宇治市五ヶ庄 ²Institute of Advanced Energy, Kyoto University, Gokasho, Uji, 611-0011, Japan 京都大学エネルギー理工学研究所 〒611-0011 京都府宇治市五ヶ庄 ³RRC "Kurchatov Institute", Institute of Nuclear Fusion, Moscow, 123182, Russia クルチャトフ研究所 ⁴National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Japan 核融合科学研究所 〒509-5292 岐阜県土岐市下石町 322-6 ⁵Pioneering Research Unit for Next Generation, Kyoto University, Gokasho, Uji, 611-0011, Japan 京都大学次世代開拓ユニット 〒611-0011 京都府宇治市五ヶ庄

Density modulation experiments by using gas puff fuelling have been carried out in Heliotron-J ECH plasmas to evaluate the diffusion coefficient D_{core} and convection velocity V_{core} in the core region. Background line averaged density \overline{n}_e was fixed around 0.6 or $0.9 \times 10^{19} \text{ m}^{-3}$. \overline{n}_e were modulated with the amplitude of $0.1 \times 10^{19} \text{ m}^{-3}$ in 50 Hz. According to the transport analysis, V_{core} are positive under both the conditions, and larger in low-density region. These imply that an outward convective term plays an important role to determine the particle transport in ECH plasmas, especially in the low-density region.

1. Introduction

Particle transport analysis is one of the important issues in the magnetically confined plasma research. The goal of this study is to reveal the feature of particle transport in Heliotron-J ECH plasma. Here, density modulation experiments by using gas puff fuelling have been carried out to evaluate the diffusion coefficient D_{core} and the convection velocity V_{core} in the plasma core region. Electron density profile measurement is required to analyze particle transport. In this study, n_e profile was measured with an amplitude modulation (AM) reflectometer [1, 2]. AM reflectometer is a useful diagnostic to measure n_e profile and to study particle transport [3, 4].

2. AM Reflectometer in Heliotron J

The schematic of the reflectometer is as follows: an AM type system is adopted to mitigate density fluctuation effects during profile measurement. The X-mode is selected as the propagation mode in order to measure even a flat or hollow n_e profile which is typically observed in ECH plasmas of helical devices. Such flat and hollow profiles have been measured in Heliotron-J ECH plasmas [2]. The carrier frequency of the reflectometer ranges from 33 GHz to 56 GHz, and can be swept as triangular wave with the sweeping frequency of 1 kHz for electron density profile measurement. Time resolution is 1 ms due to data averaging over 2 sweeps. The modulation frequency is 200 MHz.

3. Transport Analysis Method

The particle transport equations can be expressed as follows:

$$\begin{cases} \partial n_e / \partial t = -\nabla \cdot \mathbf{\Gamma} + S \\ \mathbf{\Gamma} = -D \nabla n_e + n_e \mathbf{V} \end{cases}$$
(1)

Here, Γ is the particle flux. *S* is the particle source

and negligible in the region of $\rho \le 0.6$ since it is fuelled by gas puffing. It is assumed that the modulated component is described as

$$\widetilde{n}_e = A(r)\sin\{\omega t - \phi(r)\}$$
(2)

where A and ϕ are the amplitude and phase of the modulated component, ω is the modulated frequency. Then, D and V can be expressed as follows [5]:

$$\begin{cases} D = -\omega (Y \sin \phi + X \cos \phi) \{r(\partial \phi/\partial r)A\}^{-1} \\ V = -\omega [\{(\partial A/\partial r)Y - (\partial \phi/\partial r)AX\} \sin \phi \\ + \{(\partial \phi/\partial r)AY + (\partial A/\partial r)X\} \cos \phi] \{r(\partial \phi/\partial r)A^2\}^{-1} \end{cases}$$
(3)

Here,

$$X = \int_0^r rA\cos\phi dr \,, \quad Y = \int_0^r rA\sin\phi dr \tag{4}$$

In this study, χ^2 is determined to estimate the coefficients in the core region, D_{core} and V_{core} , as [6]

$$\chi^{2} = \sum_{r} \left[\left\{ A_{\exp} \cos \phi_{\exp} - A_{calc} \cos \phi_{calc} \right\}^{2} + \left\{ A_{\exp} \sin \phi_{\exp} - A_{calc} \sin \phi_{calc} \right\}^{2} \right]$$
(5)

where the suffixes of exp and calc indicate the experimental and calculated values. The experimental value is measured with the AM reflectometer measurement. The calculated value is estimated by using the following model and Eq. (3).

$$D = D_{\text{core}}, \quad V = \rho V_{\text{core}}$$
 (6)

Consequently, the minimum of χ^2 gives D_{core} and V_{core} .

4. Experimental Results and Discussion

Density modulation experiments by using gas puff fuelling have been carried out in Heliotron-J ECH plasmas. Figure 1 shows the time evolutions of \bar{n}_{e} , W_{p} and gas puff (GP) control signal. The plasmas are produced and heated by using an ECH (70 GHz, 0.25 MW). The amount of injection gas puff fuelling can be controlled by applying voltage to piezoelectric valves. Considering recycling effect, the gas puff fuelling was gradually decreased to keep background \bar{n}_{e} constant. Two cases of the background \bar{n}_{e} were examined around 0.6 or 0.9 × 10¹⁹ m⁻³. Under both conditions, \bar{n}_{e} were modulated with the amplitude of 0.1×10^{19} m⁻³ in 50 Hz. Figure 2 shows the χ^2 profiles calculated from the analysis as described in Sec. 3. The analysis results in $D_{core} = 5.2 \text{ m}^2/\text{s}$ and $V_{core} = 59 \text{ m/s}$ in the case of $\overline{n_e} = 0.6 \times 10^{19} \text{ m}^{-3}$. Under the condition of $\overline{n_e} = 0.9 \times 10^{19} \text{ m}^{-3}$, $D_{core} = 2.3 \text{ m}^2/\text{s}$, $V_{core} = 2.3$ m/s are obtained. V_{core} are positive in both conditions, and V_{core} in the low density case is larger than that in the high density case. These imply that an outward convective term plays an important role to determine the particle transport in ECH plasmas, especially in the low density region.

Fig.1. Time evolutions of \overline{n}_{e} , W_{p} and GP control signal

Acknowledgments

The authors are grateful to the Heliotron-J technical team for their excellent arrangement of the experiments. This work was partly supported by NIFS/NINS under the NIFS Collaborative Research Program (NIFS10KUHL030).

References

- K. Mukai *et al.*: Contrib. Plasma Phys. **50** No. 6-7 (2010) 646.
- [2] K. Mukai et al.: Plasma Fusion Res. 6 (2011) 1402111.
- [3] W. W. Xiao *et al.*: Phys. Rev. Lett. **104** (2010) 215001.
- [4] W. W. Xiao *et al.*: Rev. Sci. Instrum. **81** (2010) 013506.
- [5] H. Takenaga *et al.*: Plasma Phys. Control. Fusion 40 (1998) 183.
- [6] K. Tanaka *et al.*, Fusion Sci. and Technol., 58, 70 (2010).