Natural gas reforming method using an inverter plasma

インバータープラズマを用いた天然ガスの改質

<u>Satoshi Sugimoto</u>¹, Yasushi Matsuda² 杉本敏司¹, 松田恭司²

¹Osaka University, School of engineering 2-1,Yamada-oka, Suita, Osaka 565-0871, Japan 大阪大学院工,〒565-0871 大阪府吹田市山田丘2-1 ²Sumitomo Metal Technology, Inc. 1 Higashimukoujima Nishino-Cho, Amagasaki 660-0891, Japan 住友金属テクノロジー(株) 〒660-0856 尼崎市東向島西之町1番地

The characteristics of a natural gas reforming method for hydrogen production were investigated. The reforming method combines a plasma process operated by an inverter power supply with a catalytic reaction to improve the energetic efficiency for reforming. A simple process model is presented and examined using a methane gas reforming experiment. The validity of the process model and the temperature dependency of the catalyst activity are discussed with respect to the results.

1. Introduction

To reduce CO_2 gas emission to the atmosphere, it is hoped that natural gas, including a majority of CH_4 , will be used in a reforming method that decomposes CH_4 into H_2 gas and C-containing components [1]. Reforming methods that employ plasma discharge have advantages in that no CO_2 is produced through the reforming process itself and the process plant can be manufactured on a compact scale for application in locations such as gas stations and farms. [2,3]. Improvement of the reforming energy efficiency, i.e., the ratio of the combustive energy of produced H_2 divided by the electric power for plasma discharge, is required to realize practical application.

We propose a CH_4 gas reforming method that employs a plasma discharge generated using an inverter power supply with high electric power efficiency. This method features a reforming process that involves the combination of the plasma chemical reaction and a catalytic reaction to improve the reforming energy efficiency.

In this article, we describe the process model for the proposed method and the experimental apparatus. We then present experimental results and discuss the characteristics of the reforming process.

2. Process Model

The simple process model for CH_4 gas reforming is shown in Fig. 1. The modeled process is divided into stages I and II. In stage I, raw CH_4 gas is supplied to the stage I area and is excited by electrical plasma discharge. A portion of CH_4 is

dissociated as $CH_4 \rightarrow CH_3 + H$. The excited gas, which includes CH_3 radicals, flows into the stage II area and is exposed to a catalytic material coated on the substrate. Pure carbon or hydrocarbon is deposited on this substrate from the CH_3 radicals. The substrate is heated to T_{II} to maintain activation of the catalyst.

Fig.1. Model for the proposed reforming process. CH_4 gas is introduced and excited at stage I. Carbon from the excited gas is deposited on the heated substrate at stage II. The output gas includes produced H_2 gas and unprocessed CH_4 gas.

Here, the dissociation rate of CH₄ at stage I and that of CH₃ radicals at stage II are defined as $k_{\rm I}$ and $k_{\rm II}$, respectively. The H₂ production rate is thus expressed as $k_{\rm I}(3 k_{\rm II} + 1)$. In addition, the electrical power consumed at stage I and the combustive energy of liberated H₂ gas are defined as $W_{\rm P}$ and $W_{\rm H}$, respectively. The reforming energy efficiency is calculated as $W_{\rm H}/W_{\rm P}$.

3. Experiment

The configuration of the experimental apparatus used to examine the process model is shown in Fig. 2. A plasma is generated between upper and lower parallel-plate electrodes. A substrate is placed on the lower electrode with a heater. Stainless steel 304 alloy plate, which contains the catalytic component (Fe), was used as the substrate. When the substrate temperature reached $T_{\rm II}$ under vacuum, CH₄ gas was introduced into the reaction chamber up to 600 Pa and the plasma discharge was maintained for a further 40 min.

Gas partial pressures in the reaction chamber were analyzed using a gas analyzer with a quadrupole mass-spectrometer and a differential evacuation system. The mass of carbon deposited on the substrate was measured using an electronic balance after processing. The morphology of the deposited carbon was also observed using scanning electric microscopy (SEM).

Fig.2. Experimental apparatus configuration for the CH_4 reforming process.

4. Results and Discussions

Typical time evolutions of the H₂ and CH₄ partial pressures in the reaction chamber are presented in Fig. 3. The production of H₂ gas using the proposed plasma process was confirmed. Here, we focus on the relation between carbon deposition and the substrate temperature, $T_{\rm II}$. Figure 4 shows SEM

Fig.3. Experimental apparatus configuration for the CH₄ reforming process.

images of the substrates after processing. The catalyst was activated in the temperature region greater than ca. 450 °C and a larger amount of carbon was deposited.

In the lecture, we will describe the validity of the process model and the dependency of the reforming energy efficiency on T_{II} .

Fig.4. SEM images of substrate surfaces after processing at substrate temperatures of (a) $T_{\rm II} \approx 350$ and (b) $T_{\rm II} \approx 450$ °C.

Acknowledgments

This work was partially supported by Grant-in-Aid for Scientific Research (22612002) from the Japan Society for the Promotion of Science.

References

- H. F. Abbas, W.M.A. Wan Daud, Int. J. Hydrogen Energy 35 (2010) 1160.
- [2] L.Jalowiecki-Duhamel, H. Zarrou, A. D'Huysser: Int. J. Hydrogen Energy 33 (2008) 5527.
- [3] R-F Horng, Y-P Chang, H-H Huang, M-P Lai: Fuel 86 (2007) 81.
- [4] S. Sugimoto, Y. Matsuda and H. Mori: J. Plasma Fusion Res. Series 8 (2009) 522.
- [5] S. Takechi, S. Sugimoto, M.Kiuchi, K. Tanaka, S. Goto: Surf. Coat. Technol. 136, 1-3 (2001) 69.