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In the present study, we examine a general solution to the associated linear homogeneous differential 
equations of the CR model, and survey the behavior of eigenvalues of the characteristic matrix, which 
corresponds to the reciprocal time-constant of the damping modes of the excited states to the steady state 
solution. It is proved that the differential equations describing the CR model are exponentially stable. The 
time constants of decay to the perturbation for the metastable levels are sometimes considerably long about 
several tens of microsecond for general glow discharge, whereas those for the excited states applied to 
spectroscopic observation frequently like 4p or 4p’ levels are about sub microsecond, which is applicable 
to general diagnostics of discharge plasmas. 
 

 
We often apply optical emission spectroscopy 

(OES) measurement to examine plasmas in many 
scientific fields, not only for basic science but also 
for practical engineering. Line intensities of the 
plasmas indicate number densities of corresponding 
upper excited states of the transition Np (p = 1, 2, 
…, M in the ascending order of energy; p = 0 as a 
ground state), which are theoretically described by 
collisional-radiative (CR) model as functions of 
electron temperature Te and density Ne. By applying 
the CR model, we can estimate the essential plasma 
parameters Te and/or Ne from the excited-states 
populations. A large number of studies are being 
carried out for innovative diagnostics to determine 
Te and/or Ne from OES measurement of plasmas. 

Up to the present time, however, most researchers 
are interested in steady-state solution to the CR 
model. From the mathematical point of view, the 
governing equations of the CR model are 
categorized as first-order non-homogeneous linear 
ordinary differential equations (ODE) with constant 
coefficients, where unknown functions are number 
densities of excited states Np: 
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where bold fonts denote vectors, 
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,    (2) 

and 
δi = αiNe

3 + βiNe
2 + C0iNeN0.  (3) 

Symbols used above are the same as in [1]. In Eq. 
(1), a is an M × M square matrix, and whose 
components are given as follows: 
  NeCji   for j < i, (4) 
 aji = NeCji + Aji   for j > i, (5) 
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      for j = i.   (6) 
The matrix a does not contain the time t 

explicitly, and consequently, Eq. (1) becomes an 
ODE with constant coefficients. The solution to Eq. 
(1) is given by the sum of the general solution of 
the related homogeneous equation and anyone of 
the particular solutions to Eq. (1). One of the 
simplest particular solutions to Eq. (1) is the 
steady-state solution. That is, 
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N = −a−1δ

€ 

= −a−1δ rec − a
−1δ ion ,  (7) 

where we defined  
 δ rec = αNe

3 + βNe
2,    (8) 

 δ ion = C0NeN0.    (9) 
In the society of plasma spectroscopy, almost all 

the discussions on CR model seem to have been 
concentrated on the non-homogeneous solution to 
Eq. (1), that is, the steady-state solution, Eq. (7). 
The first term is referred to as the recombining 
component and the second one as the ionizing 
component. However, such discussion is valid only 
when the excited species reaches the steady state 
after relaxation time has passed for the excited-state 
populations. If we would like to treat the transient 
response of population density of excited states, or 
find the plasma parameters of short-time pulse 
discharge, we must discuss time-dependent 
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solutions to Eq. (1). That is, when we discuss 
time-dependent excited kinetics, we must return to 
the general solutions of associate homogeneous 
ODE. 

For this purpose, we must examine the 
eigenvalues λi of the CR matrix a as Eqs. (4) – (6). 
The general solutions of associate homogeneous 
ODE is given as follows: 
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N t( ) = Ci exp λit( )ξ ii=0

M
∑ ,  (10) 

where ξ i is the i-th eigenvector corresponding to the 
eigenvalue λi, and Ci are arbitrary constants. If there 
is a degeneracy in matrix a, some terms in Eq. (10) 
should be changed into a summation including t × 
exp(λit). This, however, is not essential in the 
present discussion, since we can prove that the real 
part of any eigenvalues is negative, and that the 
system is exponentially stable in terms of an ODE 
system by Gershgorin’s theorem [2]. 
[Proposition] Real parts of all the eigenvalues of a 
square matrix a whose components are given in Eqs. 
(4) – (6) are negative. 
[Proof] Gershgorin’s theorem shows that there 
always exists an appropriate j that satisfies the 
following equation for an arbitrary eigenvalue λm, 
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λm − ajj ≤ ajk
k=1
k≠ j

M

∑ .    (11) 

Equation (6) allows us to rewrite LHS of Eq. (11) as 
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λm − ajj = λm + Ne Sj + Cjll=0,
l≠ j
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Since each term of RHS of Eq. (11) is positive,  
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Next, let us define a positive and real parameter Tj 
as follows: 
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∑ = Tj .  (14) 

Substituting Eqs. (12) – (14) into Eq. (11), we have 
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λm +Tj < Tj .    (15) 
Equation (15) shows that the arbitrary eigenvalue 
λm is located within the circle whose center is 
located at (– Tj) in the negative part on the real axis 
in the complex plane, and whose radius is smaller 
than Tj, which is real and positive. Then, the real 
part of the arbitrary eigevalue is concluded to be 
negative. This indicates that the ODE describing the 
CR model are exponentially stable. [Q.E.D.]  
 As a next step, let us examine the eigenvalues 
of Ar I excited-level systems of argon discharge, 

 
 
which is often applied as main discharge species in 
various process engineering, as functions of 
electron temperature and density. Concerning 
numbering of the eigenvalues, we define λ1, λ 2, …, 
λM according to the absolute value of their real part, 
that is, |Re(λ1)| ≤ |Re(λ2)| ≤ … ≤ |Re(λM)|. It 
indicates that the relaxation time of the excitation 
kinetics of the excited states is given by |Re(λ1)|–1. 
 Figure 1 shows the dependence of |Re(λ1)| as 
function of the electron temperature Te and density 
Ne of Ar plasma with its discharge pressure 1 Torr 
and the gas temperature 500 K with Maxwellian 
EEDF [1]. It is found that |Re(λ1)| is approximately 
proportional to the electron density Ne. On the other 
hand, we found that |Re(λ1)| becomes about  ten 
times larger almost stepwise at Te ~ 1 – 3 eV. 
 Concerning a practical application, we should 
be very careful about the treatment of the excited 
states as steady-state. However, since the 
eigenvector of this mode mainly concerns 4s or 
4s’states, which are the metastable levels or the 
levels strongly coupled with them, these time 
constants are not practically in problem in the OES 
measurement, where we often apply 4p or 5p levels. 
For these levels, we found λ5 has the shortest time 
constant, which is 1/50 times smaller than λ1. We 
should examine excited states with shorter time 
constants when we measure rapid variation. We 
need further mathematical discussion about 
practical values or dependences of eigenvalues with 
respect to various plasma parameters. We also need 
discussion about the evolution of EEDF based upon 
the time-dependent Boltzmann equation. 
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Fig. 1. Dependence of the real part of the first 
eigenvalue λ1 on Te and Ne for Ar plasma with P = 1 
Torr and Tg = 500 K. 


