# Collisionless shock experiments using high-power laser systems

高出力レーザーを用いた無衝突衝撃波生成実験

Y. Sakawa<sup>1</sup>, Y. Kuramitsu<sup>1</sup> T. Morita<sup>1</sup>, H. Tanji<sup>1</sup>, T. Ide<sup>1</sup>, K. Nishio<sup>1</sup>, et al 

 Y. Sakawa , Y. Kuramitsu T. Morita , H. Tanji , T. Ide , K. Nishio , et al <u>坂和洋一</u><sup>1</sup> 蔵満康浩<sup>1</sup>, 森田太智<sup>1</sup>, 丹治浩樹<sup>2</sup>, 井出尭夫<sup>2</sup>, 西尾健斗<sup>3</sup>, 来田三沙<sup>3</sup>, 坪内邦男<sup>2</sup>, 井手張良<sup>3</sup>, 嶋崎成一<sup>4</sup>, 田口俊弘<sup>4</sup>, 加藤恒彦<sup>5</sup>, 大西直文<sup>6</sup>, 水田晃<sup>7</sup>, 佐野孝好<sup>1</sup>, 乗松孝好<sup>1</sup>, 尾崎典雅<sup>2</sup>, 兒玉了祐<sup>2</sup>, 西田明憲<sup>2</sup>, 並木智紀<sup>8</sup>, 米田仁紀<sup>8</sup>, 中山和貴<sup>9</sup>, 富田健太郎<sup>9</sup>, 内野喜一郎<sup>9</sup>,

 S. Wang<sup>10,</sup> Q. Dong<sup>10</sup>, Y. Li<sup>10</sup>, C. Gregory<sup>11</sup>, N. Woolsey<sup>11</sup>, K. Schaar<sup>12</sup>, C. Murphy<sup>12</sup>, G. Gregory<sup>12</sup>, A. Diziere<sup>13</sup>, A. Pelka<sup>13</sup>, M. Koenig<sup>13</sup>, H. Park<sup>14</sup>, S. Ross<sup>14</sup>, N. Kugland<sup>14</sup>, D. Ryutov<sup>14</sup>, B. Remington<sup>14</sup>, A. Spitkovsky<sup>15</sup>, D. Froula<sup>16</sup>, 高部英明<sup>1</sup>

1 Institute of Laser Engineering, Osaka University 2-6, Yamadaoka, Suita 565-0871, Japan 大阪大学 レーザーエネルギー学研究センター 565-0871 大阪府吹田市山田丘 2-6 2 Graduate School of Engineering, Osaka University 2-1, Yamadaoka, Suita 565-0871, Japan 大阪大学 大学院工学研究科 大阪府吹田市山田丘 2-1 3 Graduate School of Science, Osaka University 1-1, Machikanevama, Toyonaka 560-0043, Japan 大阪大学 大学院理学研究科 大阪府豊中市待兼山 1-1 4 Setsunan University, 17-8 Ikedanaka-machi, Neyagawa 572-8508, Japan 摂南大学 工学部 〒572-8508 大阪府寝屋川市池田中町 17-8 5 Graduate School of Science, Hiroshima Univ., 1-3-1, Kagamiyama, Higashi-Hiroshima 739-8526 Japan 広島大学 大学院理学研究科〒739-8526 広島県東広島市鏡山1-3-1 6 Graduate School of Eng., Tohoku Univ., 6-6-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8579, Japan 東北大学 大学院工学研究科 980-8576 仙台市青葉区荒巻字青葉 6-6-1 7 Theory Center, Institute of Particle and Nuclear Studies, KEK 1-1 Oho, Tsukuba 305-0801, Japan 高エネルギー加速器研究機構 (KEK) 〒305-0801 茨城県つくば市大穂 1-1 8 Institute for Laser Science, University of Electro-communications 1-5-1, Chofugaoka, Chofu 182-8585, Japan 電気通信大学 レーザー新世代研究センター 182-8585 東京都調布市調布ケ丘 1-5-1 9 Interdisciplinary Graduate School of Engineering Sciences Kyushu Univ. 6-1, Kasugakoen, Kasuga, 816-8580, Japan 九州大学 総合理工学府 816-8580 福岡県春日市春日公園 6-1 10 Institute of Physics, Chinese Academy of Sciences Beijing 100190, China 11 Department of Physics, University of York, Heslington, YO10 5DD, UK 12 University of Oxford, Parks Road, Oxford OX1 3PU, UK 13 LULI, Ecole Polytechnique, Palaiseau Cedex 91128, France 14 Lawrence Livermore National Lab, 7000 East Ave, Livermore CA 94550, USA 15 Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA 16 Laboratory for Laser Energetics, 250 East River Road, Rochester, NY 14623, USA

High-mach number collisionless electrostatic shocks have been produced in counter-streaming plasmas using high-power laser systems; Shenguang II [T. Morita et al., Phys. Plasmas 17, 122702 (2010)] and Gekko XII [Kuramitsu et al., Phys. Rev. Lett. 106, 175002 (2011)]. In order to demonstrate the formation of collisionless shocks through the self-generated magnetic field due to the nonlinearity in the growth of the Weibel instability, we applied to use the NIF facility, and it was approved as a three-year experiment. OMEGA and OMEGA EP experiments have been started to study the plasma conditions of counter-streaming plasmas using Thomson scattering and to develop proton radiography diagnostics.

#### 1. Introduction

Collisionless shocks are often observed in space and astrophysical plasmas. Large amplitude turbulent waves and energetic particles are also observed in the shock environments. Diffusive shock acceleration is considered to be a standard model for non-thermal acceleration of energetic particles or cosmic rays in the universe. On the other hand, in astrophysical plasmas, there is no way to directly measure the key quantities to investigate the shock dynamics and the particle acceleration. One can observe the X-ray emission from the vicinity of the shock-front; however, there are significant uncertainties in the physics surrounding particle acceleration by collisionless shocks. A laboratory experiment can be an alternative approach to study collisionless shocks and particle acceleration.

In this paper we investigate laboratory experiments to study collisionless shock generation in counter-streaming plasmas using high-power laser systems.

## 2. Numerical studies

Recent numerical and particle-in-cell (PIC) simulation studies show that there are two possible collisionless shocks in unmagnetized plasmas: One is an electrostatic (ES) shock [1,2], and the other is a Weibel-mediated shock in self-generated magnetic field [3]. A scaling-law derived by changing flow velocities and ion-electron mass ratio in 2D PIC simulation revealed that a high-density (electron density  $n_e \sim 10^{20}$  cm<sup>-3</sup>), high-flow velocity (v ~ 1000 km/s), and large volume (plasma length ~ 30 mm) plasmas are required to produce Weibel shock. In order to achieve these plasma parameters, NIF-class laser system is required.

### 3. Experiment

Under international collaborations, we have performed several series of experiments on the high-mach number collisionless ES shock formations using Shenguang II laser system in China [4] and Gekkko XII HIPER laser system at Osaka Univ. [5].

In Gekko XII experiment [352 nm  $(3\omega)$ , 500 ps, ~100 J/beam, one to four beams,  $< 10^{15}$  W/cm<sup>2</sup>], in order to produce collisionless counterstreaming plasmas, a plastic (CH) double-plane target (60 µm in thickness and 4.5 mm in separation) was irradiated by laser beams onto the inner side of the 1st CH plane [6]. A laser-ablated plasma is formed at the 1st CH, and the 2nd CH plasma is created by radiation and/or the plasma from the 1st CH. The plasmas and shocks were diagnosed transverse to the main laser direction; shadowgraphy propagation and interferometry using a probe laser [Nd: YAG laser, 527 nm (2 $\omega$ ), ~10 ns] with ICCD and streak cameras, and visible (450 nm) self-emission measurements with ICCD and streak cameras.

Counter-streaming plasmas were produced, and we successfully observed ES shock structures by shadowgraphy and self-emission [6].

In order to demonstrate the formation of collisionless shocks through the self-generated magnetic fields due to the nonlinearity in the growth of the Weibel instability, we have applied to the NIF facility time proposal 2010 (PI: Y. Sakawa). It was approved as a three-year experiment, and the experiment will be conducted from probably 2013 when the required diagnostics, for example optical interferometry, are constructed.

We started OMEGA and OMEGA EP experiments [PI: H.-S. Park (LLNL) and PI: A. Spitkovski (Princeton Univ.)] to study the plasma conditions of counter-streaming plasmas using Thomson scattering and to develop proton radiography diagnostics for the Weibel-filaments, self-generated magnetic field, and shock-structure measurements. In the OMGA experiment, 10 laser beams (1 ns, 500 J / beam,  $\sim 10^{16}$  W/cm<sup>2</sup>) were focused on each plane of CH double-plane target with 8-mm separation. It was demonstrated using Thomson scattering measurements that a plasma with  $n_e \sim 10^{19} \text{ cm}^{-3}$  and  $v \sim 1000 \text{ km/s}$  was created at 4 mm from the target (middle of the two CH planes) at  $\sim 5$  ns form the laser timing. Proton radiography using OMEGA EP laser with two long-pulse beams for counter-streaming plasma production [352 nm (3w), 3 ns, ~2.2 kJ/beam] and two short-pulse beams for two-channel proton radiagraphy [1.05  $\mu$ m ( $\omega$ ), 10 ps, 250 J/beam] showed intersting filamentary and shock-like structures.

## 4. Summary

Collisionless shocks are studied in counterstreaming plasmas using high-power laser systems. Weibel-mediated shock experiment will be conducted with NIF laser system in near future.

#### Acknowledgments

A part of the experiments was performed under the joint research project of the institute of laser engineering, Osaka University, and supported by Grant-in-Aid for Scientific Research (B), MEXT of Japan (No. 21340172), and by a grant for the Core-to-Core Program from the Japan Society for the Promotion of Science (JSPS).

#### References

- [1] G. Sorasio et al., Phys. Rev. Lett. 96, 045005 (2006).
- [2] T. N. Kato and H. Takabe, Phys. Plasmas 17, 032114 (2010).
- [3] T. N. Kato and H. Takabe, The Astophys. J. Lett. 681, L93 (2008); H. Takabe, T. N. Kato, Y. Sakawa, Y. Kuramitsu et al., Plasma Phys. Controlled Fusion 50, 124057 (2008).
- [4] T. Morita et al., Phys. Plasmas 17, 122702 (2010).
- [5] Y. Kuramitsu et al., Phys. Rev. Lett. 106, 175002 (2011).