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For a plasma with an electron tempertature, being high enough with influence of secondary electron 

emission by electron impact to an electrode, the electron temperaure can be estimated from a slope of the 

logarithmic plot of the probe V-I characteristics. However, an electon density needs to be estimated using a 

correction factor depending on the electron temperature. 

 

 

1. Introduction 
To improve probe measurements of tokamak 

boundary plasmas with energetic electrons, we 

need to consider secondary electron emission by 

electron impact. Then, the effective coefficient of 

secondary electron emission depending on an 

electron temperature has been derived from an 

empirical formula of secondary electron emission 

for a plasma with a Maxwellian electron velocity 

distribution. The validity of the effective 

coefficient was experimentally investigated using 

probes with electrodes made of tungsten and 

molybdenum electrodes. 

 

2. Coefficient of secondary electron emission 

The coefficient of secondary electron emission is 

a function of the energy of primary electron, 
pE , 

and might be given by an empirical formula of the 

coefficient as follows: [1] 
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Here, 
m  is the maximum yield and 

mE  is the 

primary energy with the maximum yield; 
m  and 

mE  depend on a material. Table I gives their values 

for tungsten (W) and molybdenum (Mo) for probe 

electrodes. 

 

Table I. Values of 
m  and 

mE  for tungsten (W) and 

molybdenum (Mo). 
 

m       mE (eV) 

W         1.35       650 

Mo        1.25       375 

 

 

 
 

Fig.1 Dependence of 



  with 
eT . Solid curve 

indicates for tungsten (W) and broken curve 

indicates for molybdenum (Mo). 

 

 

For a Maxwellian electron velocity distribution 

with an temperature, 
eT , the effective value of 

secondary electron emission coefficient,  , can be 

defined by 
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Here, 



me  is an electron mass, 
Bk  is the 

Boltzmann constant,  bs
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

e , a 

space potential 
sV  and a bias potential applied to a 

probe electrode 
bV . It is easily seen that 



  doesn’t 

depend on 



Vs Vb  but 
eT  [2]. Figure 1 shows 



  

of tungsten and molybdenum, as functions of 
eT . It 

might be worth to mention that there is the 

condition of 81.0  for the existence of a 

monotonic sheath [3]. 

 

3. Experiment  
An argon plasma was filled in a pyrex glass tube 

with a diameter of 100 mm and a length of 800 mm, 

where a structure similar to a double plasma device 

was constructed. By decreasing a wall potential of a 

driver side against a wall potential of a target side, a 

plasma with two Maxwellian electron velocity 

distributions, the temperatures of which are 
ecT  

(



2 eV) and 
ehT (10-40 eV), respectively, was 

produced in the target side. In such the plasma with 

two electron components, the electron current of a 

probe electrode, 



Ie , is composed by two parts as 

follows: 
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where 



S  is the area of the surface of the probe 

electrode; and 



nec  and 



neh are densities of the 

components with 
ecT  and that with 

ehT , 

respectively. Note that )( ecT  represents 



  for 

ecT and that )( ehT  represents 



  for 
ehT . 

Accordingly, both 



Tec  and 
ehT  are determined 

from the usual logarithmic plot of the electron 

current. Using the logarithmic plot of 



Ie  with 

higher voltages of 



Vb , ehT  is determined since the 

contribution of the component with 



Tec  to 



Ie  is 

small. Then, using the logarithmic plot of the 

remaining electron current after the component with 

ehT  is subtracted from 



Ie , 



Tec  is determined. On 

the other hand, the usual treatment gives densities 

of the two components, 'ecn  and 'ehn , which are 

smaller than true densities we want to obtain, 



nec  

and 



neh , respectively, due to the effect of 

secondary electron emission. Specifically, 



nec ' [1(Tec)]nec  and 
eheheh )](1[' nTn  . Then, we 

define two ratios of the density of the component 

with 
ehT  to that of the component with 



Tec, i.e., 

ecehn / nnf   and '/'' ecehn nnf  . Between the two 

ratios, we have the relation of 

         



fn 
1(Tec)

1(Teh )
fn ' .            (4) 

 

  Probe measurements were made with 

consideration that different values of 'nf  might be 

obtained but almost the same value of 
nf  would be 

obtained using probes with electrodes made of 

different materials. Since we used probes with 

electrodes made of tungsten and molybdenum, we 

can compare 



fn -W  with 



fn-Mo  and 



fn-W '  with 



fn-Mo ' . The results are shown in Fig. 2, where 

W-nMo-n / ff  and '/' W-nMo-n ff  are plotted as 

functions of 
ehT  by closed circles and open circles, 

respectively. Consequently, we find the validity of 

using 



  from the facts that 1/ W-nMo-n ff  and   

)](1/[)](1['/' ehWehMoW-nMo-n TTff   , because of 

eceh TT  , where the subscript of 



  indicates the 

material (W or Mo) of an electrode. 
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Fig.2 
W-nMo-n / ff  and '/' W-nMo-n ff  are plotted as 

functions of 
ehT by closed circles and open circles, 

respectively. Solid line represents 1/ W-nmo-n ff  

and Broken curve represents



fn-mo ' / fn-W' 



[1Mo(Teh )]/[1W(Teh )]. 




