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Polarimetry has been applied in many magnetic confinement fusion devices in order to measure 
the magnetic field and the electron density. The Faraday effect rotates the polarization ellipse, 
and the Cotton-Mouton effect changes the ellipticity of the polarization ellipse. In the dense 
plasmas like ITER plasma, these two effects interfere with each other, and the formulas for the 
two effects are no longer valid. In order to comprehend the plasma state from the polarimetric 
data, the Stokes equation should be solved. We have found the new equations equivalent to the 
Stokes equation and the highly accurate approximate solutions. Our solutions hold even in high 
density region (~1021 m-3) and exhibit the highest accuracy among approximate solutions. 

 
 
1. Introduction 

Plasma polarimetric measurements have been 
installed in many fusion devices. Physical 
backgrounds of polarimetry are usually explained 
by the Faraday and the Cotton-Mouton effects. In 
the former effect the polarization ellipse (and, for 
linear polarization, the plane) rotates, while in the 
latter effect the ellipticity of the polarization 
ellipse changes. Although these two effects are 
usually treated as independent events, they 
interfere with each other in dense plasmas like 
ITER plasma. In such a case, formulas of the 
Faraday and Cotton-Mouton effects are not valid, 
and the Stokes equation expresses the change of 
the polarization state. In this study, we transform 
the Stokes equation to the new equations to obtain 
the highly accurate approximate solutions. 

 
2. Faraday and Cotton-Mouton Effects 

Polarization state can be defined by the 
polarization ellipse parameters; the orientation 
angle, ψ (with 0≤ψ≤π), the ellipticity angle, χ 
(with -π/4<χ≤π/4), the auxiliary angle, α (with 
0≤α≤π/2), and the phase shift angle, δ (with 
0≤δ≤2π). Figure 1 shows the relation between the 
polarization ellipse and these parameters. When 
one of two effects is small enough, the Faraday 
and Cotton-Mouton effects are expressed as: 
Δψ = C1 ∫ neB∥dzz1

z0
 ,                  (1) 

Δδ = C2 ∫ neB⊥2dzz1
z0

,                  (2) 
respectively. Here, z denotes the coordinate axis 

along propagation of electromagnetic radiation; 
ne denotes the electron density; B∥ denotes the 
component of the magnetic field parallel to z; B⊥ 
denotes the component of the magnetic field 
orthogonal to z; and C1 and C2 denote the 
constant values. 

 
3. Stokes Equation 

The Stokes equation expresses the change of 
the polarization state and is written as 

ds�⃗
dz

= Ω��⃗ × s⃗,                          (3) 
where the vector of s⃗  is the reduced Stokes 
vector and the vector of Ω��⃗  is the vector 
associated with the Mueller matrix representing 
the optical properties of the plasma[1]. The 
reduced Stokes vector, s⃗, is expressed as 
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Fig. 1. The polarization ellipse and the 
polarization parameters (ψ, χ, α, and δ). 



 

 

s⃗ = �
cos2χcos2ψ
cos2χsin2ψ

sin2χ
� = �

cos2α
sin2αcosδ
sin2αsinδ

�.      (4) 

The vector of Ω��⃗  is expressed as [1]: 

Ω��⃗ = �
CCMλ3neB⊥2cos2β
−CCMλ3neB⊥2sin2β
−2CFRλ2neB∥

�,             (5) 

where CFR and CCM denote the constant values, λ 
is the laser wavelength, β is the angle between 
the y direction and B⊥. 

 
4. New Expressions and Approximated Solutions 
of Stokes Equation 

Although Stokes polarization parameters 
(components of s⃗) are observables, they are not 
as intuitive as the polarization ellipse parameters. 
We transformed the Stokes equation to more useful 
equations as follow: 

dχ
dz

= CCM
2
λ3neB⊥2sin(2ψ+ 2β),          (6) 

dψ
dz

= −CFRλ2neB∥                  

−CCM
2
λ3neB⊥2tan2χsin(2ψ + 2β), (7) 

dα
dz

= −CFRλ2neB∥cosδ      

+ CCM
2
λ3neB⊥2sin2βsin2δ,       (8) 

dδ
dz

= 2CFRλ2neB∥
sinδ
tan2α

      

+CCMλ3neB⊥2 �cos2β+ sin2β cosδ
tan2α

�.  (9) 
When measuring objects are magnetic 

confinement fusion plasmas and the probing laser 
wavelength is in far-infrared range, the second term 
of RHS of eq. (7) is smaller than the first term. 
Assuming that the second term is negligible, we 
obtain the approximated solution related to the 
Faraday effect: 
Δψ = −CFR ∫ λ2neB∥dzz1

z0
.             (10) 

Substituting eq. (10) into eq. (6) leads to the 
approximated solution related to the 
Cotton—Mouton effect: 
Δχ = CCM

2 ∫ λ3ne(p)B⊥(p)2z1
z0

sin{2ψ0 + 2β(p)�    
�−2∫ CFR

q
z0

λ2ne(q)B∥(q)dq� dp.    (11) 
 

5. Comparison among Approximated Solutions 
Several approximated solutions to the Stokes 

equation have been proposed [2-5]. We have 
compared the error of our approximated solutions 
and the error of the approximated solution called as 
Type II [3]. The approximated solutions of Type II 
are expressed as: 
ψ1 = −1

2
arctan ��tan �CFR ∫ λ2neB∥dzz1

z0
��

−1
�, (12) 

δ1 = arctan �F
G
�,                       (13) 

where 
F = CCMλ3 ∫ ne(p)�By(p)2 − Bx(p)2�z1

z0
  

cos �∫ 2CCMλ3ne(q)B∥(q)dqp
z0

� dp, (14) 
G = cos �2CFR ∫ ne(p)Bz(p)dpz1

z0
�.          (15) 

Eqs. (12) and (13) are related to the Faraday and 
Cotton-Mouton effects, respectively. Conditions for 
comparison of the error of the approximated 
solutions are λ = 10−4  [m] B∥ = 1 [T], B⊥ = 5 
[T], z1 − z0 = 4 [m], and β = 0. Figure 2 shows 
the differences between the true values calculated 
by Stokes equation and approximated solutions 
related to the Faraday and Cotton-Mouton effects as 
a function of electron density. Our new solutions 
are accurate even in dense plasmas and are more 
accurate than Type II. Comparing with other 
solutions [2-5], our solutions are the most accurate 
in the above condition and need the fewest 
assumptions. 

 
6. Conclusions 

We have transformed the Stokes equation to 
more useful equations using the polarization ellipse 
parameters. We have obtained the new 
approximated solutions of the Stokes equation for 
the Faraday and Cotton-Mouton effect. Our 
solutions hold even in high density region (~1021 
m-3) and exhibit the highest accuracy among 
approximated solutions. 
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Fig.2. Errors of approximated solutions related to the (a) 
Faraday and (b) Cotton-Mouton effects as a function of 
density. 


