Present status of the Nd:YAG Thomson scattering system development for time evolution measurement of plasma profile on Heliotron J (3)

Heliotron Jプラズマの分布時間発展計測のためのNd:YAG トムソン散乱計測 装置開発の現状(3)

YASHIRO Hiroaki¹, MINAMI Takashi², ARAI Shohei¹, KENMOCHI Naoki¹, MIZUUCHI Tohru², TAKAHASHI Chihiro³, NAGASAKI Kazunobu², SANO Fumimichi², OKADA Hiroyuki², KOBAYASHI Shinji², YAMAMOTO Satoshi², NAKAMURA Yuji², HANATANI Kiyoshi², OHSHIMA Shinsuke⁴, MUKAI Kiyofumi¹, LEE Hyunyong¹, ZANG Linge,¹ KAGAWA Tasuku¹, MIZUNO Koji¹, MINAMI Takayuki¹, WATADA Hiroto¹, WADA Yoshinobu¹, KONOSHIMA Shigeru², KASAJIMA Keijun⁵, HARADA Tomotaka⁵, HISADA Akifumi⁵

<u>八代浩彰¹</u>, 南貴司², 荒井翔平¹, 釼持尚輝¹, 水内亨², 高橋千尋³, 長崎百伸², 佐野史道², 岡田浩之², 小林進二², 山本聡², 中村祐司², 花谷清², 大島慎介⁴, 向井清史¹, H.Y.Lee¹, L.Zang¹, 香川輔¹, 水野浩志¹, 南貴之¹, 和多田泰士¹, 和田善信¹, 木島滋², 笠嶋慶純⁵, 原田伴誉⁵, 久田祥史⁵

¹ The Graduate School of Energy Science, Kyoto University, Gokasho, Uji-shi, Kyoto, 611-0011, Japan 京都大学大学院エネルギー科学研究科 〒611-0011 京都府宇治市五ヶ庄

² Institute of Advanced Energy, Kyoto University, Gokasho, Uji-shi, Kyoto, 611-0011, Japan

京都大学エネルギー理工学研究所 〒611-0011 京都府宇治市五ヶ庄

³ National Institute for Fusion Science, 322-6 Oroshi-cho, Toki-shi, Gifu, 509-5292, Japan

核融合科学研究所 〒509-5292 岐阜県土岐市下石町322-6

⁴ Pioneering Research Unit for Next Generation, Kyoto University, Gokasho, Uji-shi, Kyoto, 611-0011, Japan

京都大学次世代開拓研究ユニット 〒611-0011 京都府宇治市五ヶ庄

⁵ Kyoto University Faculty of Enginnering, Undergraduate School of Electrical and Electronic Engineering,

Yoshidahonmachi, Sakyou-ku, Kyoto 606-8501

京都大学工学部電気電子工学科 〒606-8501 京都市左京区吉田本町

We are developing polychromators for a new high repetition rate Nd:YAG Thomson scattering measurement system for Heliotron J. This Nd:YAG Thomson scattering system enables to measure time evolution of electron temperature and electron density simultaneously at 25 spatial points by 25 polychromators. Polychromators, containing five interferrence filters and five avalanche photo diodes, are used as spectral analyzers of scattered light. In this study, we make the optimized design of the polychromators, and make performance check of the polychromators.

1. Introduction

Measurement of electron temperature and density profiles of plasma is one of the important issues in magnetically confined plasma research. The popular methods of the multipoint Thomson scattering measurements are TV Thomson method, LIDAR Thomson method, and Nd:YAG Thomson method. Among them, Nd:YAG Thomson method is especially suitable for high-repetition operation.

Nd:YAG laser beams are injected into plasma and scattered by collision with electrons. Scattered lights show spectral broadening, from which the electron temperature is estimated. Total amount of scattered lights is a function of electron density.

In Heliotron J, plasma width along the laser

beam is 25 cm, discharge pulse length is 200 ms. The Nd:YAG Thomson scattering system is designed to measure at 25 spatial points in the 10 ms cycle. Expected electron temperature is 10 eV - 10 keV, and density is greater than $0.5 \times 10^{19} \text{ m}^{-3}$.

To make reliable measurement, spectral analysis of the scattered lights is an important factor. The purpose of this study is to design and construct spectral analyzer system that is optimized for the Nd:YAG Thomson scattering system, and to make performance check of the analyzer. In this study, polychromators are selected as a spectral analyzer.

2. Polychromator Design

One polychromator has five wavelength

channels and one Reileigh calibration channel with interference filters and avalanche photo diodes (APDs). The basic idea of the polychromator is shown in Fig.1. Interference filter is an optical filter that transmits particular spectral bands and reflects others. By these filters, the scattered lights are divided into five wavelength ranges. Then, the light signals are transformed into electric signals by APDs and transmitted to data-analyzing system.

Fig.1 Basic idea of the polychromator

The combination of the transmission wavelength range for the five interference performance optimized by filters is а code, so that the errors in simulation temperature and density evaluation become minimal. The result is listed in Table 1.

Table 1	l. List	of filter	wavelength
---------	---------	-----------	------------

Filter.1	700 - 845nm
Filter.2	845 - 960nm
Filter.3	960 - 1025nm
Filter.4	1025 - 1050nm
Filter.5	1050 - 1060nm
	_

Estimation of scattered photon count for each

interference filter as a function of the electron temperature is shown in Fig.2 a). The electron density is assumed to be 3×10^{19} m⁻³, which is a typical value for Heliotron J plasma. At least two channels have enough count number to measure the accurate plasma profile between 10 eV and 10 keV. The expected errors, caused by bremsstrahlung, for the temperature and density are shown in Fig.2 b). Both errors are below 3%.

3. Performance Test for Polychromator

In this section, the method to make performance check of the polychromator is described. The equipment for this test consists of a light source, a monochromator, a light chopper, and a laser power meter. The light source, Apex Illuminator, and the monochromator are manufactured by Newport Co. Ltd. A test light of selected narrow band wavelength is produced by them. Then, the light is transformed into a pulse signal by the chopper, and goes into the polychromator. Changing the wavelength band of the monochromator, the intensity of the light is measured at the entrance of the polychromator and each interference filter channel. The transmission curves obtained from this test are used for the derivation of the electron temperature and density from the scattered light signal.

4. Summary

The design of the polychromator for the Nd:YAG Thomson scattering system in Heliotron J is reported. As a result of performance simulation, the optimized design of the polychromator is decided. To check the polychromator performance, test equipment has been prepared. We will accomplish performance test of polychromators soon, and the result will be discussed in the presentation.

Acknowledgments

The authors are grateful to the Heliotron J team for their excellent arrangement of the experiments. This work is supported by the Collaboration Program of the Laboratory for Complex Energy Processes, IAE, Kyoto University and the NIFS Collaborative Research Program (NIFS10KUHL030, NIFS09KUHL028, NIFS10KUHL033).

References

- [1] H. Rohr *et al.*: Periodic multichannel Thomson scattering in ASDEX (1987).
- [2] I. Yamada *et al.*: J. Plasma Fusion Res. Vol.79 No.9 (2000).
- [3] T. Minami *et al.*: Rev. Sci. Instrum. Vol.81 issue 10 (2010).