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An essential difference of the plasma theory from the neutral fluid mechanics is in that plasma models may 

include a varity of "singular perturbations" determining scale hierarchies. Comparison of the ideal 

magnetohudrodynamics (MHD) and the two-fluid MHD may be the best practice by whch we can explore 

how a singular perturbation (electron inertia) determines an intrinsic (small) scale that is absent in the 

scale-invariant MHD system; in turn, how a sinlularity can emerge when an "obstacle" finite scale is 

removed with neglecting the singular perturbation. Here we study the role of Casimir invariants that 

characterize the "non-canonical" property of the determing symplectic geomerty; we define some different 

"sub-classes" of canonicalized self-contained mechanics of the reduced MHD, and report results of 

numerical analysis. 

 

 

1. Introduction 

  Complex scale hierarchy is a fundamental 

characteristic of plasmas.  Mathematically an 

intrinsic scale is determined by a "singular 

perturbation" that is represented by a term including 

a small scale parameter and a higher-order 

diffetential [1].  The ideal magnetohydrodynamics 

(MHD) is the base line that is free from any 

intrinsic scale, i.e. scale invariant.  Including 

various singular perturbations, we obtain 

corresponding scales. Each intrinsic scale poses an 

obstacle preventing creation of singularity; this 

conjecture is still a tall order for rigorous proof 

(even for the conventional viscosity term that is a 

linear singular perturbation; the electron/ion inertia 

terms are nonlinear singular perturbations that yield 

dispersive effects, instead of dissipation).  The aim 

of present study is to analyze scale hierarchy as a 

"phase-space foliation" determined by "sub-class 

dynamics" immersed in the total phase space. 

 

2. Non-canonical Hamiltonian dynamics 

The plasma fluid models have some conservation 

laws arising from either symmetries in the 

Hamiltonian or a "topological defect" (kernel) of 

the Poisson bracket [2]. The latter constants of 

motion is called Casimir invariants. A Hamiltonian 

system that has Casimir invariants is said 

"non-canonical."  A Casimir invariant foliates the 

phase space, and the dynamics is constrained on a 

lieaf of the Casimir invariant.---as far as the phase 

space is of a finite dimension, this geometrical 

picture applies properly. However, in an 

infinite-dimension function space, the notion of 

Casimir leaf must be more carefully defined; if the 

Casimir invariant is not a continuous functional, 

even a bounded region on a Casimir leaf is not 

compact ---a lief (level-set) of such a Casimir is not 

such a smooth surface depict as a finite-dimension 

maniforld. We are interested in a possible 

pathological property created by a singularity of 

non-canonical Poisson bracket.  

 

3. Reduced magnetohydrodynamics 
 P.J. Morrison and R.D. Hazeltine proposed a 

transformation of RMHD into a canonical form [4]. 

We denote the electrostatic potential by  , and 

the flux function by  .The vorticity is 

      and the current is      . Then 

the two-dimensional RMHD [3] are given by 

 

                                                  
                                                       
 

where brackets are  

 
                                                        
 

 Pegoraro et al. showed that the dynamical 

system in the two-dimensional two-fluid 

model that contained electron inertia was 

represented as a non-canonical Hamiltonian 

form [5,6,7].  

Morrison has introduced the following new 

variables. 
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         and    are new field variables 

introduced here. This change of variables gives the 

perspective from higher degrees of freedom. 

 

4. Construction of subclasses 

  Morrison suggested that the transformation of 

these variables is not unique. We found several 

different kinds of transformation. According to 

non-canonical RMHD there exist following 

conserved Casimirs: 

 

                                                           

                                                       

 

where      is an arbitrary function of  . We can 

consider another transformation:  

 

   
 

 
   

    
                                 

 

The characteristic of this transformation is that    

becomes zero. It is easy to check the following: 

 

                                                     

 

This transformation increases the degrees of 

freedom.  

The following transformation maintains two 

variables, which allows us writing down the 

canonical Hamiltonian form. 

 

                                                      
 

RMHD becomes: 

 

                                                             

                                                           
 

   is the convective derivative,           . 
   is equal to zero. We can analyze subclasses 

without increasing the degrees of freedom. 

 

5. Numerical experiments 

 In order to analyze RMHD systems, we built a 

simulation code. We performed preliminary 

numerical experiments to verify whether the code is 

correct or not. The finite difference method was 

used to develop code for the spatial second order 

accuracy. Time is advanced using third order 

explicit Adams-Bashforts method. The boundary 

conditions are periodic. 

 The analytical solution is compared to numerical 

solution. We assume that            , 

     where    and    are the equilibrium 

fields. We linearize the system 

 

                ,          . 

 

We also neglect   dependence, then equations 

become 

 

                  
                      (12)                 

                                                          
 

The prime denotes the derivative of a function with 

respect to  . These are the well-known wave 

equations. We have observed the wave motion to 

proceed in the direction of y. This result is 

consistent with the analytical solution. 

  We began with the initial conditions: 

 

      
   

  
    

                       
 

Now all variables are normalized. Fig.1 shows the 

vorticity of the fluid when    . It can be seen that 

the small vortex occurs continuously. We observe 

gradually sharpening vorticity. 

 

 
 
               Fig.1. Vorticity  
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