Selective growth of single-walled carbon nanotubes by plasma enhanced chemical vapor deposition

プラズマCVDによる単層カーボンナノチューブの選択合成

<u>Tomohiro Nozaki</u>, Yoshida Shinpei, Ken Okazaki 野崎智洋, 吉田新平, 岡崎健

Department of Mechanicaland Control Engineering, Tokyo Institute of Technology 2-12-1 O-okayama, Meguro, Tokyo 152-8552, Japan 東京工業大学・機械制御システム専攻 〒152-8552 東京都目黒区大岡山2-12-1

Atmospheric pressure radio-frequency discharge (APRFD) has advantage over vacuum-oriented plasma enhanced chemical vapor deposition (PECVD) in terms of single-walled carbon nanotube (SWCNT) growth. Plasma-generated C_2H_2 is the main CNT growth precursor in PECVD. In the cathode sheath of APRFD, approximately 30% of the CH₄ (initial feedstock) was converted into C_2H_6 , C_2H_4 and C_2H_2 . A trace amount of C_2H_2 enabled the synthesis of SWCNTs in the thermal CVD regime. Hydrogen is necessary to grow SWCNTs under non-thermal plasma environment because H_2 suppresses formation of excess amount of C_2H_2 ; however, H_2 does not eliminate amorphous carbon even at H_2/C_2H_2 ratios of 300. Atmospheric-pressure PECVD performed with a He/CH₄/H₂ system is equivalent to C_2H_2 -assisted thermal CVD without an etching gas. Depending on pressure, in other words C_2H_2 content, SW and MWCNTs can be selectively synthesized.

1. Introduction

There were no reports on SWCNT synthesis in the PECVD regime by 2003 [1]. Tremendous effort has been made towards the control growth of desired CNTs using unique properties of reactive plasma, enabling SWCNTs under the low-pressure remote plasma CVD system [2]. However, due to limited supply of plasma-generated reactive species, SWCNT growth rate is unexpectedly low and dense SWCNT film is hardly synthesized. Exceptionally, microwave remote plasma CVD successfully grew millimeter-tall SWCNTs [3]. Atmospheric pressure enhanced CVD (AP-PECVD) plasma was originally highlighted because of its simplicity and flexibility over the process parameters. More recently, it is recognized as one of the promising technique to grow vertically aligned SWCNTs [4,5].

In PECVD, conversion of initial feedstock into acetylene (C_2H_2) is the key to determining CNT morphology and to enhance overall growth rate. Main role of H_2 , as supposed to be an etchant, is actually to suppress C_2H_2 formation during plasma-induced decomposition of initial feedstock. Note C_2H_2 -sensitized thermal CVD does not fully reproduce plasma-grown SWCNTs due to the presence of ions [5]. In this paper, we focus on the gas analysis to identify the key species responsible for SWCNT growth in the non-thermal plasma environment. The role of plasma-generated C_2H_2 on CNT growth is highlighted as a major CNT growth precursor and selective growth of SW and MWCNTs are discussed.

2. Experimental

A capacitively coupled RF discharge (13.56 MHz) was generated between two parallel-plate metallic electrodes separated by 5 mm. The RF power was transmitted through the upper electrode (40 mm diameter) equipped with water-cooled sintered metallic mesh plate [6]. The sintered metal plate was manufactured from stainless steel powders with an average grain size of 100 µm.

A catalyst-coated substrate was located on the heated bottom electrode. A detailed catalyst preparation procedure is described in Refs. [4]. Briefly, an aluminum oxide thin film with estimated thickness 20 nm was initially coated on a silicon substrate (15×15 mm). The iron catalyst was dip-coated using an iron-acetate-containing ethanol solution. The dip-coated substrate was annealed in air at 400 °C for five minutes. The iron oxide was reduced by atmospheric pressure RF discharge in the He and H₂ mixtures ($1500, 10 \text{ cm}^3 \text{min}^{-1}$). After a five-minute plasma treatment at 500 °C, the substrate temperature was elevated to 700 °C, and the flow rates of He, H₂ and CH₄ were adjusted for CNT growth.

3. Online gas analysis in the plasma sheath

The gas component in the cathode plasma sheath was analyzed qualitatively using a quadrupole mass spectrometer (QMS; Prisma, Pfeiffer Vacuum Technology). A thin metallic capillary tube (outer diameter, 450 μ m; inner diameter, 250 μ m) with an outer diameter one-half of the sheath thickness was

inserted into the sheath. The reacting gas was extracted directly for online gas analysis, and fragment peaks from m/e = 1 to 100 were recorded. A clear difference is observed between m/e = 25 and 30. Except for methane, the main hydrocarbon component is C_2H_6 , although a trace amount of C_2H_2 and C_2H_4 are possible. Other fragment peaks related to higher hydrocarbons, such as propane (m/e < 44) and butane (m/e < 58), were not detected. For quantitatively gas analysis, the reacting gas was accumulated in a gas bag and then analyzed by gas chromatography (Shimadzu, GC-8A).

Figure 1 shows the CH₄ conversion and selectivity for the C₂ hydrocarbons at different conditions. At 100 kPa, the main product is C_2H_6 that corresponds well with mass spectrometry analysis. In addition, 20% of the C_2H_4 and a trace amount of C₂H₂ were detected and the product selectivity is influenced by H_2 content. C_2H_2 content was approximately 70 ppm with H₂ dilution and 220 ppm without H₂. C₂H₆ selectivity is remarkably decreased at 20 kPa. C₂H₆ is produced by a three-body recombination of CH_3 ($CH_3 + CH_3$) $+ M = C_2H_6 + M$). The overall reaction rate is pressure dependent, thus C2H6 formation is suppressed as the total pressure decreases. Correspondingly, the selectivity for C_2H_4 and C_2H_2 was increased at reduced pressures.

Figure 1 CH₄ conversion and selectivity for the C₂ hydrocarbon. \Box 20 kPa, H₂ = 0; \blacksquare 100 kPa, H₂ = 90 cm³min⁻¹. He/ CH₄ = 3000/48 cm³min⁻¹ and 60 W.

3. Pressure-dependent selective growth of CNTs

CNTs produced at different total pressure and fixed input power (60 W) were characterized by micro-Raman spectroscopy equipped with 514 nm excitation laser (Seki Technotron STR750 Laser Raman Spectrometer). Figure 2 shows pressuredependent change in the peak intensity ratio of G-band to D-band of Raman spectrum (hereafter the G/D ratio). The G/D ratio decreases as total pressure decreases, implying formation of defective graphite structure is enhanced in the reduced pressure. In other word, G/D ratio deteriorates as C_2H_2 increases. TEM analysis clearly showed that MWCNTs were preferentially synthesized at reduced pressure. In addition to total pressure, the G/D ratio depends greatly on initial amount of catalyst metal [8]. There is an optimum value for the initial amount of catalyst precursor for SWCNT growth.

Figure 2 Pressure-dependent change in the G/D ratio of CNTs: He/CH₄/H₂, 3000/48/90 cm³min⁻¹; 60 W; 700°C; 3 min synthesis; Fe catalyst, \bullet 0.15 and \blacksquare 0.05 wt%

Concluding remarks

Plasma-produced C_2H_2 is the key component to grow CNTs. Atmospheric pressure RF discharge enabled SWCNTs because it suppressed C_2H_2 formation. SWCNTs turned MWCNTs as total pressure decreased where C_2H_2 content increased. Note that ions are unique in plasma process thus C_2H_2 -assisited thermal CVD does not fully reproduce plasma grown CNTs.

Acknowledgements

The project was supported by KAKENHI. T.N. expresses great thank to Prof. Shigeo Maruyama (Department of Mechanical Engineering, The University of Tokyo) for the catalyst preparation.

References

- M. Meyyappan, et al., Plasma Sources Sci. Technol., 12 (2003) 205.
- [2] M. Meyyappan, J. Phys. D, 42 (2009) 213001.
- [3] G. Zhong, et al., J. Phys. Chem. C, **113** (2009) 17321.
- [4] T. Nozaki et al., Plasma Proc. Polym., 5 (2008) 300.
- [5] T Nozaki et al., J Phys D, 44 (2011) 174007.
- [6] T. Nozaki, et al., J Jpn Appl. Phys., 50 (2011) 01AF03.
- [7] T. Nozaki, et al., Carbon, 48 (2010) 232.
- [8] H. Sugime, et al., Carbon 47 (2009) 234.