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The Stark broadening of a Be II line (1s23d 2D – 1s24f 2F, 467.339 nm) under a magnetic field is evaluated
with the divertor plasma of ITER in mind. The electron and ion perturbers are treated in the impact and static
approximations, respectively. The perturbation term due to the magnetic field is included in the static approxima-
tion. The results show that the Stark broadening comes to be significantly large when the density is higher than
1021 m−3, and the ion temperature would be overestimated if the Stark broadening is not taken into account.
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1. Introduction
The divertor impurity monitor diagnostics of ITER

[1], the so-called DIM, consists of several UV-visible spec-
trometers, and is responsible for measuring emission lines
of impurity ions in the divertor region, and the measured
data will be utilized for the plasma control, device protec-
tion, physical research, and so on.

Because a beryllium- or other low Z material-coating
is considered for the divertor and the first wall plates in
the current ITER design baseline, those impurity atoms are
expected to be introduced into the divertor plasma. On the
other hand, since the requirements for DIM include the ion
temperature (Ti) measurement, the use of emission lines of
these impurity ions may be considered. More specifically,
DIM is supposed to use the Doppler broadening of those
beryllium ion lines for the measurement of Ti.

Regarding beryllium ions, some Be II and Be III lines
are expected to have high emissivities in the UV-visible
wavelength range based on the results of SOLPS-ITER
[2], which is a plasma boundary code package based on
the plasma and neutral transport codes, i.e., B2.5 [3] and
EIRENE [4], respectively.

For accurate Ti measurements, it is necessary to con-
sider other effects on the emission line profile besides
Doppler broadening. Firstly, there is an effect caused
by magnetic fields. The magnetic field strength in ITER
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plasma is typically 5 T, and so emission lines would split
into some components due to the Zeeman effect. The split-
ting width depends on the field strength and on the quan-
tum state regarding the angular momentum of the upper
and lower levels of the transition. When the splitting width
is comparable to the Doppler broadening width, the Zee-
man effect could contribute to the observable broadening
width.

Secondly, the SOLPS-ITER calculation indicates the
electron density of the divertor plasma could exceed
1021 m−3 near the target plates [5] where Ti is a few eV
or lower. In such high density conditions, it is possible
that the Stark broadening also influences the evaluation of
the broadening width for the Ti measurement. We here
attempt to calculate the Stark broadening for a Be II line
(1s23d 2D – 1s24f 2F, 467.339 nm) with a fixed magnetic
field of 5 T and quantitatively evaluate their influence on
the Ti measurement. This line was chosen because of the
structure of the upper and lower energy levels, which was
expected to be highly affected by the Stark broadening.

It is noted that we focus on an emission line of the
beryllium ion in this paper, but it is highly likely that ITER
will not use beryllium. Even so, the method used in this
study is universal and can be applied to any other ions with-
out any difficulty.

2. Calculation Method
We adopt the same calculation method used in Ref. [6]

c⃝ 2025 The Japan Society of Plasma
Science and Nuclear Fusion Research

2401012-1



Plasma and Fusion Research: Regular Articles Volume 20, 2401012 (2025)

for the Stark broadening, i.e., ion and electron contribu-
tions are treated as the static and impact approximations,
respectively, and the convolution of these profiles is re-
garded as the observable line profile.

For the impact approximation, the data found in Ref.
[7] are adopted, where the line profile is approximated by
the Lorentz function and is represented by the full width at
half maximum (FWHM). The width is assumed to be pro-
portional to the perturbers density, and its proportionality
coefficient is given for respective lines. The FWHM for the
present Be II line is approximated by 0.508× (ne/1023) nm,
where ne is the electron density and in m−3. The electron
temperature is assumed to be 1000 K [7].

For the static approximation, a distribution function of
the electric field strength as a collection of microfields cre-
ated by ions is considered. The Holtsmark distribution [8]
is used for the present calculation. The perturbers are dom-
inated by protons and its density is assumed to be equal
to that of electrons. We assume an isotropic plasma so
that the resulting electric field distribution is also isotropic.
The difference from the condition in Ref. [6] is that there
exists a magnetic field which is oriented in a specific di-
rection and makes the system axisymmetric with respect
to the magnetic field.

We calculate the emission line profile in the presence
of an electric field E of a certain direction and strength,
together with a fixed magnetic field B, and superpose the
line profiles by scanning the strength and direction of the
electric field to obtain the line profile to be observed.

The Hamiltonian H under a magnetic field and an
electric field can be written as

H = H0 − µ · B − E · d, (1)

where H0 is the non-perturbed Hamiltonian, µ is the mag-
netic moment of the atom, and d is the electric-dipole mo-
ment. When we take the quantization axis z in the direc-
tion of B, and denote the direction of E as ξ, Eq. (1) can be
rewritten as

H = H0 − µBB(gLLz + gS S z) − Edξ, (2)

where B = |B|, E = |E|, µB is the Bohr magneton, gL (= 1)
and gS (≈ 2) are the orbital and spin g-factors, respectively,
Lz and S z are the z-axis components of the orbital and spin
angular momentum quantum numbers, and dξ is the ξ di-
rection component of d.

The first term gives diagonal elements of H which cor-
respond to the level energies without perturbation fields,
and the matrix elements due to the second term are ob-
tained by the conventional method to deal with the Zeeman
effect [9].

For evaluating the matrix elements due to the elec-
tric field perturbation, i.e., ⟨LJM| − Edξ |L′J′M′⟩,we first
rewrite the eigenstates |LJM⟩ in the coordinates with the
quantization axis in the ξ direction. Such an operation
can be made by the coordinates rotation [9] denoted by R,
which turns the z-axis in the E or the ξ-axis direction.

Fig. 1 Euler rotation for turning the quantization axis (z-axis)
into the ξ-axis direction by first rotating θ1 around the
z-axis and then θ2 around the y′-axis which is the new y-
axis after the first rotation. The definition of observation
vectors eH and eV are also shown: The former is in the x-
z plane and is perpendicular to the line-of-sight, and the
latter is on the y-axis.

Following the Euler rotation formalism, the rotation R
can be realized by first rotating θ1 around the z-axis and
then θ2 around the new y-axis, i.e., y′-axis in Fig. 1. The
resulting state |LJM⟩ξ can be expressed as

|LJM⟩ξ = D(R)|LJM⟩, (3)

where D(R) is the operator for the rotation R. With the use
of the inverse operator D(R−1), Eq. (3) can be rewritten as

|LJM⟩ = D(R−1)|LJM⟩ξ (4)

=
∑

m

|LJm⟩ξD(J)
mM(R−1) (5)

=
∑

m

|LJm⟩ξD(J)∗
Mm(R), (6)

where D(J)
mM(R−1) expresses the matrix elements of D(R−1)

for the case when the total angular momentum quantum
number is J and is called the Wigner function. The last line
is derived with the relation of D(J)

mM(R−1) = D(J)∗
Mm(R) [10].

Matrix elements of the third term in Eq. (2) can be then
rewritten as

⟨LJM| − Edξ |L′J′M′⟩ (7)

= −E
∑
m,m′

D(J)
Mm(R)D(J′)∗

M′m′ (R)⟨LJm|ξdξ |L′J′m′⟩ξ (8)

= −E
∑
m,m′

D(J)
Mm(R)D(J′)∗

M′m′ (R)⟨LJm|d|L′J′m′⟩, (9)

where the self-evident relation

⟨LJm|ξdξ |L′J′m′⟩ξ = ⟨LJm|d|L′J′m′⟩, (10)
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is used.
Now all the matrix elements are obtained and we

can calculate the perturbed energy levels by diagonaliz-
ing Eq. (2). In general, the degeneracy is resolved and
the magnetic sublevels come to have different energy val-
ues. Each eigenstate is obtained as a linear combination
of unperturbed states where the coefficients correspond to
the eigenvector elements derived in the diagonalization of
Eq. (2).

Such calculations are performed for the upper and
lower states of the transition, and the wavelengths of the
resolved line components are obtained as the differences
between the upper and lower level energies.

Next, the intensity of each line component is consid-
ered. The line intensity is proportional to the square of
the electric dipole moment corresponding to the upper and
lower state combination. By giving the wavelengths and
intensities for respective lines, the entire spectrum is syn-
thesized as a sum of all the line components.

In this calculation, we must be aware that the observ-
able line intensities depend on the angle between the line-
of-sight and the magnetic and/or electric field because each
resolved line component is polarized. We assume that the
line-of-sight is in the x-z plane and has an angle ϕ with
z-axis as shown in Fig. 1. The observable line intensity is
obtained as a sum of two linearly polarized components
which are perpendicular to each other.

The basis vectors corresponding to the direction of the
two linear polarization components are here called the ob-
servation vectors. One observation vector is chosen so as
to be parallel to the y-axis, and the other is in the x-z plane
and perpendicular to the line-of-sight as shown in Fig. 1.
The former and latter observation vectors are denoted eH

and eV, respectively.
The line intensity of a transition from |u⟩ to |l⟩ states

is here represented by the square of the matrix component
of the corresponding electric dipole moment as

I = |⟨l|e · d|u⟩|2, (11)

where e stands for eH or eV, and d is the electric dipole
moment. Their scalar product e · d can be expanded in the
spherical coordinates as

e · d = −e1d−1 + e0d0 − e−1d1. (12)

The coefficients e±1 and e0 can be expressed as

e0 = γ, (13)

e±1 = ∓
1
√

2
(α ± iβ), (14)

where α, β, and γ are the x-, y-, and z-axis components of
the observation vector e. In the present case, α = γ = 0,
and β = 1 for eH and α = cos ϕ, β = 0, and γ = sin ϕ for
eV. We here assume to observe the plasma from an upper
port with a line-of-sight looking down on the divertor at an

angle of 30 degrees from the vertical to the toroidal direc-
tion, i.e., ϕ is approximately 60 degrees. In the following
calculations we will use this value for ϕ.

Evaluation of Eq. (11) requires the spherical compo-
nents of the electric dipole moment

⟨l|dq|u⟩, (15)

with q = 0,±1. As derived above, an eigenstate under ex-
ternal field perturbations is understood to be a linear com-
bination of unperturbed states. Here, |l⟩ and |u⟩ can be ex-
pressed by unperturbed lower state |l′r⟩ and upper state |u′s⟩
as

|l⟩ =
∑

r

Cl
r |l′r⟩, (16)

|u⟩ =
∑

s

Cu
s |u′s⟩, (17)

where Cl
r and Cu

s are the elements of the eigenvectors ob-
tained by the diagonalization of Eq. (2). The term ⟨l|dq|u⟩
is then rewritten as

⟨l|dq|u⟩ =
∑
r,s

Cl
rC

u
s ⟨l′r |dq|u′s⟩. (18)

Now we write the basis states |l′r⟩ and |u′s⟩ explicitly as

|l′r⟩ = |L1J1M1⟩, (19)

|u′s⟩ = |L2J2M2⟩. (20)

In this case, with a help of the Wigner-Eckart theorem and
the Racah algebra, each component in Eq. (18) can be writ-
ten as [11]

⟨l′r |dq|u′s⟩ = ⟨L1J1M1|dq|L2J2M2⟩
= (−1)(J1−M1)+(S+1+L1+J2)

√
(2J1 + 1)(2J2 + 1)

×
(

J1 1 J2

−M1 q M2

) {
L1 J1 S
J2 L2 1

}
⟨L1||d||L2⟩,

(21)

where (· · · ) and {· · · } are the 3- j and 6- j symbols, respec-
tively. The last factor in Eq. (21), which is called the re-
duced matrix element, is related to the line strength S ′ as

⟨L1||d||L2⟩ = ±α0

√
S ′

2S + 1
, (22)

where a0 is the Bohr radius and S ′ is in the atomic units.
The positive and negative signs correspond to the cases
L1 = L2 + 1 and L1 = L2 − 1, respectively. Equation (11)
can be now evaluated, and each line component for a given
combination of B, E, and e is obtained.

By performing such calculations for all combinations
of magnetic sublevels in the upper and lower levels, and for
eH and eV, the intensities of all observable emission line
components are obtained for a given combination of B and
E. For evaluation of the Stark broadening, a weighted in-
tegral following the Holtsmark distribution should be per-
formed with respect to the electric field strength. Further-
more, since the electric field can be oriented in any direc-
tion, integration over all directions must be also performed.
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Fig. 2 Examples of calculated spectra of the Be II line
(1s23d 2D – 1s24f 2F, 467.339 nm) for four different per-
turber density cases when Ti = 1 eV.

It is noted that if the perturbation is only the electric
field, the difference in the observable intensity of the po-
larization component due to the direction of the electric
field relative to the line-of-sight is averaged out, so it is not
necessary to integrate for the electric field direction and
simply take the sum of emission intensities of the π and σ
lights. However, because isotropy cannot be assumed due
to the presence of a fixed magnetic field, it is necessary to
integrate for all directions for the electric field.

Finally, the obtained spectrum is convoluted with the
impact approximation broadening and the desired emission
line profile with the Stark broadening in a magnetic field is
obtained.

3. Results and Discussion
Figure 2 shows the spectra calculated for some dif-

ferent perturber density values. The thin lines show the
spectra calculated with the method discussed in the previ-
ous section. The cross symbols show the convolution of
the spectra with the Doppler broadening of 1 eV. Here, we
give each data point a random error following the Poison
distribution considering that fitting will be later performed
with the Gaussian function to derive Ti.

It can been seen that the line is divided into three main
peaks. The central peak and the two lateral peaks corre-
spond to the π and σ components of the Zeeman split line,
respectively. The intensity ratio of the π and σ compo-
nents is mainly determined by the angle between the line-
of-sight and the magnetic field, which is about 60 degrees.

Assuming a simple Ti measurement, the central peak
is fitted with a single Gaussian, and Ti is determined from

Fig. 3 Density dependence of Ti derived via fitting of calculated
spectrum with a single Gaussian function.

its width. Figure 3 shows the results for cases of Ti = 1,
2, 5, 10, and 20 eV. It is readily noticed that the evaluated
Ti increases with the density especially in the range where
the density is higher than 1021 m−3. This is considered to
be an effect of the Stark broadening. The error is evalu-
ated as the root mean square of the difference between the
measured and the fitted data. It is also seen that the ob-
tained temperature error increases with increasing density
because the shape of the emission lines is no longer well
represented by a single Gaussian.

It should be noted that even when the density is lower
than 1020 m−3, Ti obtained by fitting is higher than the as-
sumed temperature value. This is caused by the splittings
of emission line components due to the Zeeman effect.

In summary, we have studied the Stark broadening in a
magnetic field for a beryllium ion emission line. When the
electron density exceeds 1021 m−3, which is a possible con-
dition in the ITER divertor plasma, it has been confirmed
that the Stark broadening becomes significant so that the
ion temperature measurement can be affected.

Acknowledgments
This work was performed partially under the sup-

port of the NIFS Collaboration Research Program
(NIFS22KIEH003). M.G. thanks Nader Sadeghi for dis-
cussions on the calculation method. M.G. also thanks An-
nette Calisti for her helpful suggestions.

[1] https://www.iter.org/
[2] E. Kaveeva et al., Nucl. Mater. Energy 35, 101424 (2023).
[3] V. Kotov et al., Juel-Report, 4257 (2007).
[4] D. Reiter et al., Fusion Sci. Technol. 47, 172 (2005).
[5] R.A. Pitts et al., Nucl. Mater. Energy 20, 100696 (2019).
[6] N. Sadeghi and M. Goto, J. Quant. Spectrosc. Radiat.

Transf. 245, 106875 (2020).

2401012-4



Plasma and Fusion Research: Regular Articles Volume 20, 2401012 (2025)

[7] H.R. Griem, Spectral line broadening by plasmas, Aca-
demic Press, New York (1974).

[8] C.F. Hooper, Phys. Rev. 169, 193 (1968).
[9] T. Fujimoto and A. Iwamae, Plasma Polarization Spec-

troscopy, Springer, Berlin (2007).

[10] J.J. Sakurai, Modern Quantum Mechanics, Addison-
Wesley, Redwood City (1985).

[11] P.H. Heckmann and E. Träbert, Introduction to the Spec-
troscopy of Atoms, North-Holland, Amsterdam (1989).

2401012-5


