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Data assimilation, a technique that uses actual measurements to optimize simulation models, is a powerful
approach for achieving fast and accurate predictions of fusion plasma behavior. In this study, we validate the
effectiveness of the data assimilation technique in the integrated simulation of tokamak plasmas. We use the data
assimilation system ASTI, which has been successfully applied to real-time prediction and control of helical plasmas.
We extend ASTI for transport simulation of tokamak plasmas and introduce a new data assimilation method that
incorporates measurement error information. In this paper, we present simulation results using measurements from
JT-60U plasma heated by neutral beam injection. Comparisons of several turbulent transport models are also
provided. The results demonstrate that the data assimilation method is effective in tokamak simulation as well and
expected to be useful for real-time prediction and control in the future.
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1. Introduction
Magnetic fusion plasmas are complex systems in which

a variety of physical phenomena interact with one another.
To predict and control the behavior of fusion plasmas, the non-
linear dependencies among physical quantities must be taken
into account.

Integrated simulations have been developed to predict
and analyze plasma behavior and to design operational scenar-
ios for burning plasmas. Real-time and control-oriented pre-
dictions of tokamak plasmas have also been achieved using
integrated simulation codes [1–3]. However, modules in inte-
grated simulation codes have uncertainties that arise from
various approximations and assumptions of the physical model.
These uncertainties interact and degrade the accuracy of sim-
ulation results. Moreover, many physical phenomena are not
accounted for in the codes. As a result, predictions from inte-
grated simulations often diverge from the actual plasma
behavior.

To address these issues, we have introduced a data assimi-
lation (DA) technique to integrated simulation. DA is a method
to improve the simulation accuracy by optimizing the simu-
lation model using actual observation data. This technique
has been studied mainly in the fields of meteorology and
oceanography for accurate forecasts. We have developed a

*Corresponding author’s e-mail: ichikawa.ryu.84n@st.kyoto-u.ac.jp

DA system ASTI (Assimilation System for Toroidal plasma
Integrated simulation) for integrated simulation of fusion
plasmas. In the previous works, the prediction of LHD plasma
with improved accuracy using ASTI has been achieved [4, 5].
ASTI has also been expanded as an adaptive model predic-
tive control system, and the control experiment conducted at
LHD has proven the effectiveness of the DA-based control of
helical plasmas [6, 7].

While ASTI was originally developed for helical plas-
mas, we are currently expanding it for transport control of
tokamak plasmas. As the first step in this expansion, this study
focuses on predictive simulations of JT-60U plasmas. We use
measurements from neutral beam injection (NBI) discharges
and perform simulations with the DA technique. We also
improve the DA method implemented in ASTI to account for
the measurement error information. Similar techniques using
the extended Kalman filter have been applied for reconstruc-
tions of density profile [8, 9] and q-profile [10]. Although the
extended Kalman filter is a powerful approach, it may per-
form poorly for strongly nonlinear systems due to its reliance
on linear approximations. In contrast, the ensemble Kalman
filter (EnKF) [11] which we employ in this study, avoids
such linearization and is therefore more suitable for non-
linear systems such as burning plasmas. Additionally, we
establish a quantitative evaluation method for turbulent trans-
port models using DA and compare the performance of sev-
eral models.
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In Sec. 2, the DA method, the simulation model and the
simulation configuration in this study are presented. The
results given by the simulations with ASTI for JT-60U plasma
are shown in Sec. 3. The conclusions are given in Sec. 4.

2. Data Assimilation
Simulation models inherently differ from actual physical

systems, as they are simplified representations based on
assumptions and approximations. DA is a method for proba-
bilistically quantifying the uncertainty in simulations and esti-
mating the conditional probability distribution of a state based
on actual observations, using Bayes’ theorem. ASTI employs
the EnKF as the DA scheme.

2.1 The ensemble Kalman filter
The EnKF is an algorithm based on sequential Bayesian

filters. It treats the system state probabilistically, rather than
deterministically as in typical numerical simulations. In the
EnKF, the system state is represented by a state-space model,
which consists of a nonlinear, non-Gaussian system model
and a linear, Gaussian observation model:xt = ft(xt−1, vt), vt ∼ p(vt), (1)

yt = Htxt +wt, wt ∼ N(0, Rt) . (2)

Here, xt and yt represent the state vector and the observation
vector at time t, respectively. In Eq. (1), the state vector xt−1
is time-evolved by the system model ft, with system noise vt
added to represent deviations from the true state. In this
study, we assume Gaussian system noise: p(vt) = N(0, Qt).
In Eq. (2), the observed variables are extracted from the state
vector xt using the observation matrix Ht, and Gaussian
observation noise wt is added to express the gap between the
estimated value and the observed one.

From the system model, a non-Gaussian distributionp(xt) and a Gaussian distribution p(yt) are obtained. The
objective of the EnKF is to estimate the conditional probabil-
ity distribution p(xt y1: t) of the state xt given the observa-
tions y1: t ≡ y1, …, yt . This distribution is refered to as “the
filtered distribution”, and it is estimated using “the predicted
distribution” p(xt y1: t−1) and the latest observation yt.

The EnKF represents the probability distribution p(x)
using an ensemble of N samples, x(n) n = 1N  via the Monte Carlo
approximation:

p(x) ≐ 1N n = 1
N δ x − x(n) , (3)

where ≐ denotes equality with Monte Carlo approximation.
In the EnKF, the two steps of the prediction and the fil-

tering are repeated alternately using the state-space model
described in Eqs. (1) and (2). In the prediction steps, each fil-
tered ensemble member is time-evolved using the system
model:

xt t−1(n) = ft xt−1 t−1(n) , vt(n) . (4)

xt t′(n) (1 ≤ n ≤ N, t′ is an arbitrary time) denotes the nth mem-
ber of the ensemble which approximates the probability dis-
tribution p(xt y1: t′). System noise vt(n) is generated from
Gaussian distribution N(0, Qt). After prediction, ensemble of
the filtered distribution is calculated from the predicted
ensemble and the observation model, Eq. (2):

xt t(n) = xt t−1(n) + Kt yt +wt(n) − Htxt t−1(n) , (5)

where wt(n) = wtn − 1/N ∑k = 1N wtk , and the observation
noise wtn  is generated from N 0, Rt . Kt is called Kalman
gain, and determines the degree of the correction to the state
vector. Kt is given as

Kt = V t t−1HtT HtV t t−1HtT + Rt −1, (6)

where V t t−1 is a sample covariance matrix of the ensemble
for the predicted distribution, xt t−1(n) n = 1N . The key symbols
used in this paper are summarized in Table 1.

2.2 System model
We employ the integrated simulation code TASK [12] as

the system model for ASTI. The core of TASK code is the
one dimensional transport code TASK/TR, which solves the
1D diffusive transport equations for particle and energy:∂∂t(nsV′) = − ∂∂ρ V′⟨|∇ρ|⟩nsVs

−V′⟨|∇ρ|2⟩D∂ns∂ρ + SsV′, (7)

∂∂t 32nsTsV′5/3 = −V′2/3 ∂∂ρ V′⟨|∇ρ|⟩
VKs + 32Vs nsTs − V′⟨|∇ρ|2⟩
32DTs∂ns∂ρ + nsχs∂Ts∂ρ+PsV′5/3 .

 (8)

Table 1. Key symbols in this paper.

xt State vector at time tyt Observation vector at time tft System model at time tHt Observation matrix at time tvt System noise at time twt Observation noise at time tQt System-noise covariance matrix at time tRt Observation-noise covariance matrix at time ty1: t Set of observations, y1, …, ytp(xt y1: t−1) Probability distribution of the state vector at time t,
given the observations at time 1 to t − 1p(xt y1: t) Probability distribution of the state vector at time t,
given the observations at time 1 to txt t−1(i) i = 1N Ensemble approximating the predicted distributionp(xt y1: t−1)xt t(i) i = 1N Ensemble approximating the filtered distributionp(xt y1: t)
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The subscript s indicates the particle species (i for ions and e
for electrons). Ts and ns denote the temperature and density
of species s, respectively. ρ is the normalized minor radius.⟨⟩ denotes the magnetic surface average. V′ = ∂V/∂ρ repre-
sents the plasma volume differentiated by ρ. VKs and Vs are
the pinch velocities of energy and particles, respectively. In
this study, we do not apply any physical model for the pinch
velocities. Both VKs and Vs are set to zero in TASK, and onlyVs is later modified in DA. Ss and Ps represent the particle and
heat sources and sinks, respectively. In this study, Ss includes
the NBI particle source and charge exchange, while Ps includes
only NBI heating power. Heat and particle sources from NBI
are pre-calculated using the OFMC code [13] for several time
points, and loaded into TASK/TR. The particle sources from
the transport and charge exchange of the peripheral neutral
particles are evaluated using the AURORA module [14].

In this study, we assume ion and electron densities are
approximately equal: ne ≃ ni. The thermal and particle diffu-
sivities χs and D are assumed to be the sum of neoclassical
element and turbulent components:χs = χsTB + χsNC, (9)

D = DTB + DNC . (10)

For the neoclassical components, we use Chang & Hinton’s
model [15, 16], which provides the ion thermal diffusivity as
follows:

χiNC = ε−3/2q2ρi2τi0.66 + 1.88ε1/2 − 1.54ε1 + 1.03ν ∗i1/2 + 0.31ν ∗i 1 + 32ε2
+ 0.59ν ∗iε1 + 0.74ν ∗iε3/2 1 + 32ε2 − 1 − ε2 ,

 (11)

where ε is the inverse aspect ratio, ρi the ion Larmor radius,τi the ion collision time, and ν ∗i the ion collisionality. We
assume the electron thermal diffusivity and the particle diffu-
sivity using the ion thermal diffusivity:

χeNC = memiχiNC, (12)

DNC = χiNC10 . (13)

For the turbulent components, we use following several tur-
bulent transport models:
2.2.1 The CDBM model

Thermal diffusivity of the current diffusive ballooning
mode (CDBM) model [17] is given as

χsTB = CsF(s , α)α3/2 c2ωpe2 vAqR, (14)

where c is the speed of light, ωpe = nee2/meε0 the electron
plasma frequency, vA the toroidal Alfvén velocity, q the safety
factor, and R the major radius. The factor F is given by

F =
12(1 − 2s′)(1 − 2s′ + 3s′2) ,for s′ = s − α < 0,(1 + 9 2s′5/2)2 (1 − 2s′ + 3s′2 + 2s′3) ,for s′ = s − α > 0,

 (15)

where s  is the magnetic shear and α is the normalized MHD
pressure gradient. s  and α are defined by

s ≡ rq dqdr , (16)

α ≡ −q2Rdβdr , (17)

where r is the minor radius and β is the ratio of the plasma
pressure and the magnetic pressure, (pe + pi)/(B02/2μ0). The
coefficient Cs is set to 12 following [18]. The effect of the
magnetic curvature is neglected due to the large aspect ratio
approximation.
2.2.2 The gyro-Bohm model

The gyro-Bohm model defines the thermal and particle
diffusivities asχsTB = Cs ρiL TseB , (18)

DTB = Cd ρiL TieB , (19)

where the coefficients Cs and Cd are set to match the magni-
tudes of the diffusivities with those from the CDBM model.
In this study, we use Ce = 1.0, Ci = 1.2, and Cd = 2.0.
2.2.3 The Alcator model

The Alcator model gives thermal and particle diffusivi-
ties as χsTB = Cs1n, (20)

DTB = Cd1n . (21)

The coefficients Cs and Cd are set using the same method as
in the gyro-Bohm model, Cs = 1.6 × 10−19 [m5/s] and Cd =
1.0 × 10−19 [m5/s].
2.2.4 The constant model

We use the constant model only for the particle diffusiv-
ity. This model assumes the particle diffusivity asDTB = Cd . (22)

We employ Cd = 0.8 [m2/s].
In the current system, MHD equilibrium is pre-calculated

at discrete time points using the TOPICS code [19, 20], and
the metric data, ⟨ |∇ρ|⟩, ⟨|∇ρ|2⟩ and V′, are loaded to
TASK/TR dynamically, but the time evolution is not solved
in the simulation code. Safety factor q, which significantly
affects Chang & Hinton’s neoclassical diffusivity and the
CDBM model turbulent diffusivity, is also pre-calculated in
this study.
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2.3 State vector
In this study, the state vector is defined asxt = (Te, t, Ti, t, ne, t, ni, t, ce, t, ci, t, dt,ut, ξnn, t, ξTn, t, ke, t, ki, t) .  (23)

Descriptions of these state variables are provided in Table 2.
The 11-dimensional vectors represent radial profiles at ρ =
0.0, 0.1, …, 1.0. The 10-dimensional vector ut represents the
radial profile at ρ = 0.1, 0.2, …, 1.0 as the convection veloc-
ity at ρ = 0.0 is zero. The diffusivities, neutral density and
temperature, and NBI heat deposition are optimized via fac-
tors ce, t, ci, t, dt, ξnn, t, ξTn, t, ke, t, ki, t. These factors are initial-
ized to one plus Gaussian noise and subsequently updated in
the filtering procedure.

The magnitudes of the initial background error and the
system noise for each variable are also listed in Table 2. The
error and noise values with “%” represent the ratio of the
standard deviation to the predicted value, while those with-
out “%” denote the absolute standard deviation. These hyper-
parameters are determined by maximizing the marginal
likelihood, which will be detailed in Sec. 2.5.

2.4 Observation models
In this study, we use the measurements from an NBI-

heated plasma in JT-60U (shot: 44180) [21]. Figure 1 shows
the time evolution of the NBI power. We define the time at
which the first observation is obtained as 0.00 s. As shown in
the figure, the injected heating power changes in steps. Radial
profiles of the electron temperature Te, electron density ne,
and ion temperature Ti are measured at six time points. We
use the first measurement as the initial state and remaining
five for DA.

An example of the observed profile data is shown in
Fig. 2. As seen in the figure, locations of measured data are
not evenly distributed along the radial direction. Moreover,
the spatial distribution of observation points varies by time
and for each variable. To assimilate these non-uniformly dis-
tributed measurements into the simulation model, the follow-
ing two methods are used. Approach 1 follows the method
proposed in the previous study [4], while Approach 2 intro-
duces an improved method incorporates measurement error
information.

Table 2. Variables in the state vector.

Variable Description Dimension Initial background error System noiseTe, t Electron temperature at t 11 5.0% 5.0%Ti, t Ion temperature at t 11 5.0% 5.0%ne, t Electron density at t 11 5.0% 5.0%ni, t Ion density at t 11 5.0% 5.0%ce, t Factor for electron thermal diffusivity at t 11 0.4 0.5ci, t Factor for ion thermal diffusivity at t 11 0.4 0.5dt Factor for particle diffusivity at t 11 0.4 0.5ut Correction term for particle convection velocity at t 10 0.5 0.2ξnn, t Factor for neutral density at the edge at t 1 0.1 0.1ξTn, t Factor for neutral temperature at the edge at t 1 0.1 0.1ke, t Factor for electron NBI heat deposition at t 11 0.05 0.03ki, t Factor for ion NBI heat deposition at t 11 0.05 0.03

Fig. 1. Injected neutral beam power for shot 44180. Dashed lines indi-
cate the time points at which temperature and density profiles
were measured. We use the observation data at 0.00 s (blue
line) as the initial state and the others (obtained at the times
indicated by red lines) for the DA.

Fig. 2. Electron temperature profile at 0.00 s. Measurement points are
unevenly distributed along the radial direction.
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Approach 1: Profile fitting of the measurements
Firstly, we perform the profile fitting of the raw mea-

surement data using Gaussian process regression (GPR) to
produce uniformly spaced observations. Radial profiles ofTe, Ti and ne are generated at ρ = 0.0, 0.1, …, 1.0, from
which the observation vector is constructed as:

yt = Te, tfit , Ti, tfit , ne, tfit , ni, tfit . (24)

Here, the hats denote the observation data, and the subscripts
“fit” refer to the fitted profiles. Observation of the ion den-
sity ni, tfit  is decided according to the quasi-neutrality ni ≃ ne,
as described in Sec. 2.2. The observation vector yt is a 44-
dimensional vector, composed of four 11-dimensional sub-
vectors.

The observation matrix Ht is constructed simply by con-
catenating a 44 × 44 identity matrix with a 44 × 67 zero
matrix:Ht = I44 O44, 67 , (25)

where the number 67 represents the number of the non-
observed parameters. Multiplying Ht with the system vectorxt extracts the observed components of xt.

The standard deviation of the Gaussian observation
noise wt is set proportional to the prediction error (i.e., the
difference between the predicted and the observed values).
The proportionality constant is set to 0.8 by maximizing the
likelihood [4].
Approach 2: Linear interpolation using the observation
matrix

The first approach is effective when measurement error
information is unavailable. However, when the observed data
contains measurement error information, as in this case, we
can consider the credibility of each observation during the
filtering step by reflecting the error information to the obser-
vation noise. In this section we propose a method which uses
an improved observation model to consider the measurement
error information.

To reflect the measurement error to the observation noise,
we use the observed profiles without fitting them to uniform
radial profiles. The observation vector is defined as:

yt = Te, traw, Ti, traw, ne, traw, ni, traw , (26)

where the subscripts “raw” denote unprocessed data. Similar
to the previous approach, the ion density profile ni, traw is
decided by assuming ni ≃ ne. Since this observation vectoryt is a concatenation of the observed radial profile of each
variable, the length of the vector is not constant and changes
with times, depending on the shape of the actual measure-
ments at each time step. While the observation matrix Ht is
time constant in approach 1, in this approach we must set dif-
ferent Ht for each filtering step to assimilate yt with time
varying shape.

In this approach, the observation matrix Ht performs
two functions:

1. Extracts the temperature and density components from the
state vector xt.

2. Linear interpolates the extracted values to match the mea-
surement locations in yt.

The observation matrix Ht has the following block form:

Ht =
MTe MTi O OO Mne Mni

, (27)

where the zero matrix on the right has the shape of (dimension
of the observation vector) × (number of the non-observed
variables in the state vector). Mx(x = Te, Ti, ne, ni) are linear
interpolation matrices that maps state variables to measure-
ment points. The observation model is thus written as:

MTe MTi O OO Mne Mni

Te, tTi, tne, tni, tce, tci, tdtutξnn, tξTn, tke, tki, t

+wt =
Te, trawTi, trawne, trawni, traw

. (28)

Here, the observation noise is given by

wt =
wTe, twTi, twne, twni, t

∼ N(0, Rt), (29)

where Rt is the diagonal covariance matrix of observation
noise, constructed from the known measurement errors.

2.5 Simulation configuration
Before estimation with the EnKF, hyperparameters such

as the initial background error, system noise levels, and
ensemble size must be determined. We determine these
hyperparameters by maximizing the log-likelihood. The log-
likelihood for a parameter θ is estimated by [22]:l(θ) = logp(y1:T θ)

= t = 1
T logp(yt y1: t−1, θ)

≃ tk = t1
tM log n = 1

N αtk(n) − MlogN,
 (30)

where
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αtk(n) = 1(2π)l Rtk|× exp −12 ytk − Hxtk tk−1(n) T
Rtk−1 ytk − Hxtk tk−1(n) .

 (31)

Since there are 12 system noise parameters, uniform
search of the parameter space is impractical. To reduce the
number of the evaluation cases, we restrict the search domain
to fewer dimensions using the following three assumptions.
Firstly, we fix the noise intensities of the observed variables
at 5% of the predicted values. Secondly, assuming that the
predictions of neutral density and temperature at the edge and
NBI heating deposition are sufficiently accurate, we set the
low noise intensities. Finally, we set the noise intensities ofce, ci, and d to be the same value. Under these simplifica-
tions, we conduct simulations with various noise intensities
for ce, ci, d and u, and select the configuration that yields the
highest log-likelihood. In this hyperparameter tuning step,
the ensemble size is fixed at 520. We use the CDBM model
for thermal turbulent transport and the constant model for
particle turbulent transport. For the observation model, we
use approach 2 presented in Sec. 2.4. The determined values
for initial background error and system noise are shown in
Table 2.

The ensemble size is then determined. A larger ensem-
ble size improves estimation accuracy, but also increases
computational cost. Figure 3 shows the log likelihood evalu-
ated for ensemble size of 130, 260, 390, 520, 780, and 1,300.
The results indicate that the log likelihood saturates around
an ensemble size of 520; therefore we set the size to 520.

3. Results
3.1 Improvement of the observation model

We simulate particle and energy transport of bulk ions
and electrons in an NBI discharge, using the DA method with
two observation models introduced in the Sec. 2.4. Figure 4
shows the simulated ion temperature profiles at t = 2.00 s
and t = 4.73 s. The black lines correspond to the observation
model of approach 1 (which does not account for measure-
ment error), and the blue lines correspond to approach 2
(which does account for measurement error). The orange lines
represent results from simulations using TASK without DA.
All simulations employ the CDBM model for thermal diffu-
sivity and the constant model for particle diffusivity. The
green dots with error bars represent observed values and their
corresponding measurement errors.

It is evident from the figure that the reproducibility of the
observations increases by applying the DA. While both DA

Fig. 3. Log likelihood for ensemble size of 130, 260, 390, 520, 780,
and 1,300.

Fig. 4. A comparison of the results at (a) time 2.00 s and (b) time 4.73 s. The orange lines represent the results from the simulation using TASK without
DA. The black and blue lines represent the results of the simulations with DA. The black ones correspond to the observation model of approach
1 (not reflecting the observation error), and the blue ones correspond to the observation model of approach 2 (reflecting the observation error).
The green dots and error bars represent the observed values and the measurement errors.
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approaches reproduce the observed ion temperature profile
well at t = 4.73 s, differences in accuracy appear at t = 2.00 s.
Also, the steep peak at the core region in the observation at
2.00 s is not reproduced in the results of either approaches.
There are two likely reasons for these results: the number of
DA performed and the off-axis heating at 2.00 s. In general,
prediction accuracy improves with more assimilation steps.
The prediction at t = 2.00 s reflects only a single assimilation
at t = 1.00 s, whereas the prediction at t = 4.73 s is the result
of three assimilations at t = 1.00, 2.00 and 4.05 s, which can
be considered as the reason for the difference in accuracy.

Another factor is that the observed ion temperature pro-
file at t = 2.00 s peaks at the core region despite off-axis
heating. Figure 5 shows the NBI heating deposition profiles
on ion at t = 2.00 s and 4.73 s. The heating peak at t = 2.00 s
is located near ρ = 0.4, with relatively low power deposited
in the core. Nevertheless, the observed ion temperature rises
sharply at the core, indicating a possible significant reduction
in heat diffusion near the magnetic axis. It has also been
reported that during off-axis heating, heat transport is not com-
pletely diffusive, and some degree of inward heat flux is
required to explain the observation [23]. However, such effects
are not captured in the present simulation model.

Despite this limitation, approach 2 provides relatively
accurate predictions at ρ > 0.2 at t = 2.00 s. This difference
between two approaches stems from their respective DA pro-
cedures at t = 1.00 s. Figure 6 compares the optimizations ofTi and ci at t = 1.00 s. The green dots in (a1, a2) indicate the
assimilated observations. As mentioned in Sec. 2.4, approach 1
uses fitted profiles, while approach 2 uses raw measurements.
Error bars indicate the standard deviations of observation
noise. The difference in assimilated observation results in
distinct filtered profiles of Ti (the red lines). In the filtered
profile of Ti in approach 2, transport-barrier-like structures

emerge around ρ = 0.4 and 0.8, whereas approach 1 yields
smoother profiles. To reproduce these features, ci is opti-
mized accordingly in the filtering step. (b2) shows that the
filtered profile of ci is significantly suppressed near ρ = 0.8 in
approach 2, reducing diffusivity in that region. The dip
around ρ = 0.2 ∼ 0.3 is also deeper in the filtered profile than
that in approach 1.

In approach 2, observation noise is set based on actual
measurement errors, while in approach 1 it is based on pre-
diction error. In charge exchange recombination spectroscopy
(CXRS), the core temperature measurements are generally
less accurate than those at the edge [24]. This is considered
to be another reason of the difference in the filtered profile ofTi between two approaches, since it leads to the focus of the
DA shifting on improving the prediction accuracy of the
periphery, rather than the core region.

Figure 7 shows the time evolution of electron tempera-
ture, hydrogen ion temperature and electron density. The
improved observation model (approach 2) is employed in this
result. We can see that the graph is discontinuous at each time
point at which the observation is obtained. This shows that
the temperature and density profiles are optimized by DA. The
hatched areas show the standard deviations of the probability
distribution. It is seen that the standard deviation is smaller
after each assimilation. This is because the filtering procedure
tend to narrow the width of probability distribution.

This study uses only the H-mode phase plasmas in the
shot number 44180. ASTI is also capable of predicting L-mode
plasmas, although the performance of each turbulent trans-
port model requires further evaluation. The current system
can follow L-H transitions by assimilating the observation
after the transition, but the prediction of transition in advance
requires the implementation of transition model to the system
model. A detailed measurement that captures the structure of

Fig. 5. Radial profile of the NBI heating power deposition on hydrogen ions at (a) 2.00 and (b) 4.73 s. The power deposition is pre-calculated by OFMC
code. Off-axis heating is performed at 2.00 and on-axis heating is performed at 4.73 s.
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the H-mode pedestal will also be required to optimize the
model. We believe that even a simplified model, when paired
with detailed observations, can make good predictions of the
transition phenomena.

3.2 Comparison of turbulent transport models
Estimating turbulent transport is essential for accurate

prediction of burning plasmas. However, since this DA tech-
nique aims for real-time prediction and control, high-fidelity

Fig. 6. (a1, a2) Radial profiles of Ti at time 1.00 s of approach 1 and 2, respectively. The green dots with error bars represent the observation and the
observational errors, used for the assimilation in each approach. (b1, b2) Radial profiles of ci at time 1.00 s of approach 1 and 2, respectively.
The blue lines show the predicted profile and the red lines show the filtered profile. Since ci changes only by the filtering, the predicted value ofci at time 1.00 s is the same as the initial value, which is unity plus Gaussian noise. The hatched areas in (b1, b2) show the standard deviations of
the probability distribution.

Fig. 7. Time evolution of electron temperature, hydrogen ion temperature and electron density at (a, b, c) ρ = 0.2 and (d, e, f) ρ = 0.7. The green dots
indicate the observed values, the orange lines are the results of the simulation only by TASK, and the blue lines indicate the results from the
simulation with DA. The hatched areas show the standard deviations of the probability distribution.
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and computationally expensive models are unsuitable. Instead,
we optimize the diffusivities using DA to ensure accuracy
with computationally inexpensive models. In this section,
performances of turbulent transport models introduced in
Sec. 2.2 are compared. We test the CDBM, gyro-Bohm, and
Alcator models for thermal diffusivity. The same model is
used for both ions and electrons. For particle diffusivity, we
use the constant, gyro-Bohm, and Alcator models. We per-
form simulations with a total of nine combinations, three for
each of thermal and particle diffusive models. The log-
likelihood for each combination is summarized in Table 3.

The factors ce, ci, and d are used to optimize the diffu-
sivities χeTB, χiTB, and DTB respectively. The space-time distri-
bution of these factors contain essential information on
predictive performance of each turbulent transport model.
Magnitude of variance in the space-time distributions of these
factors indicate how strongly the diffusivity distribution cal-
culated from the models have been corrected by the DA.
Here, we allow dispersion for the spatial distribution, and only
consider variance of the temporal distribution. Figure 8 shows
the radial profile of time and ensemble averaged ce,1M tk = t1

tM 1N n = 1
N ce(n), (32)

for each turbulent thermal transport model. Here, t1 ∼ tM
indicate the times when DA takes place, and N is the size of

the ensemble. Hatched areas on the graphs indicate the stan-
dard deviation of ensemble-averaged ce over time:

1M tk = t1
tM 1N n = 1

N ce(n) − 1M tk = t1
tM 1N n = 1

N ce(n) 2 . (33)

Width of the hatched region indicates how strongly the cor-
rection of ce is made at each time DA takes place. In the
results shown in Fig. 8, the constant model is used as the tur-
bulent particle transport model. Similar radial profile shapes
are observed with the CDBM and Alcator models, though the
Alcator model yields slightly smaller deviations. In contrast,
the turbulent electron thermal diffusivity of the gyro-Bohm
model at the edge is corrected by the factor of over 5 on aver-
age. Its standard deviation is also much larger than the case
with other 2 models, indicating stronger corrections at each
filtering procedure, suggesting poor baseline performance of
the gyro-Bohm model. The “radial mean of std” at the top of
each graph indicates the radial mean of the value of Eq. (33)
normalized by the average magnitude. This parameter is con-
sidered to represent the predictive performance of each tur-
bulent model. Table 4 shows the radial means of standard
deviation for each combination of turbulent models.

From both the log-likelihood and the standard deviation
of the optimization factors, the CDBM model is proven to
offer high predictive accuracy. This aligns with previous find-
ings [25] which demonstrated the effectiveness of the CDBM
model for JT-60U discharges. Log-likelihood is the highest
for the case in which the CDBM model and the constant
model are used for thermal and particle transport, respectively.
The strong performance of the constant model may be due to
the relatively stable electron density observed in this dis-
charge, which reduces the need for time-dependent correc-
tions. Little time variation in observed density also leads to
similar results of the constant and Alcator models.

Table 3. Log likelihood of the simulations with combinations of turbu-
lent transport models.

Thermal

CDBM gyro-Bohm Alcator

Particle
constant −246.7 −337.3 −307.1
gyro-Bohm −337.0 −455.0 −528.0
Alcator −278.8 −356.4 −366.6

Fig. 8. Radial profile of time and ensemble averaged ce obtained from simulations with (a) the CDBM model, (b) the gyro-Bohm model and (c) the
Alcator model as the turbulent thermal transport model. The hatched parts represent the standard deviation of ensemble averaged ce over time.
“Radial mean of std” on the top of the graph shows the radial mean of the value of Eq. (33).
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4. Conclusions
In this study, we have applied the DA system ASTI to

predictive simulations of JT-60U plasmas. The results demon-
strate that DA is effective in simulating particle and energy
transport in tokamak plasmas. Simulations incorporating DA
shows significantly better agreement with observations than
those conducted using TASK code alone. We have proposed
an improved observation model that incorporates measure-
ment error information into filtering process. This observation
model achieved better agreement with observations compared
to the previous model. The new approach is effective in situ-
ations where the measurement errors are available from diag-
nostic data.

The simulations with DA also allows for quantitative
comparison of different turbulent transport models. We have
carried out the comparison and evaluation of several turbulent
transport models. Our analysis have revealed that the combi-
nation of the CDBM model for thermal turbulent transport
and the constant model for particle turbulent transport pro-
vides good predictions. Simulations using the CDBM model
yields relatively accurate temperature predictions regardless

Table 4. Radial means of the standard deviation of the optimization fac-
tors ce, ci, and d over time, for each combination of turbulent
models.

ce Thermal

CDBM gyro-Bohm Alcator

Particle
constant 0.28 0.31 0.25
gyro-Bohm 0.27 0.37 0.23
Alcator 0.26 0.30 0.23

ci Thermal

CDBM gyro-Bohm Alcator

Particle
constant 0.35 0.72 0.36
gyro-Bohm 0.33 0.49 0.31
Alcator 0.37 0.60 0.32

d Thermal

CDBM gyro-Bohm Alcator

Particle
constant 0.14 0.21 0.16
gyro-Bohm 0.18 0.37 0.23
Alcator 0.16 3.33 0.19

of the particle transport model used, confirming the robust-
ness of this model. The good performance of the constant
model in this study is attributed to the limited temporal varia-
tion in the observed electron density profile. Future work
will involve further evaluation of the particle turbulent trans-
port model under conditions with larger density variations.

In the present simulations, time evolution of equilibrium
is not solved in the code, and the pre-calculated data is loaded
dynamically to TASK/TR code. In tokamak simulations, it is
important to accurately assess time evolution of magnetic
field and equilibrium. Our next step is to extend ASTI into a
coupled transport-equilibrium prediction system for tokamak
plasmas by implementing an equilibrium solver.
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