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We develop a real-time adaptive predictive control system based on data assimilation (DA) for the temperature
and density of helical fusion plasmas. The DA-based control approach enables the harmonious integration of
measurement, heating, fueling, and simulation and can provide a flexible platform for adaptive model predictive
control. The core part of the control system, ASTI, is built upon the integrated simulation code TASK3D and a data
assimilation framework DACS. DACS integrates adaptation of the predictive model (digital twin) to the actual system
using real-time measurements and control estimation that is robust against model and observation uncertainties. We
perform numerical experiments using ASTI to control the electron temperature profile and density of a virtual plasma
generated by TASK3D. The results demonstrate that ASTI can effectively drive the virtual plasma state toward the
target state while bridging the gap between the digital twin and the virtual plasma. Furthermore, the numerical
experiments clarify the effects of hyperparameters in the DA-based control approach on control performance.
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1. Introduction
Future fusion reactors will require state estimation of the

fusion plasma based on limited observations and harmonious
control of various actuators. One powerful approach to address
this challenge is digital twin control, which captures the
internal state of the system and estimates the optimal control
input for the target state by leveraging a virtual model of a
physical object (digital twin) [1–3]. However, there are sev-
eral problems in achieving a digital twin control for fusion
plasmas. First, it is inherently difficult to model all the com-
ponents of fusion plasma and their interactions with suffi-
cient accuracy. Second, it is difficult to predict the behavior
of the entire plasma in real time with high accuracy. Further-
more, nonlinear model predictive control generally requires
iterations of predictive calculations. Therefore, the actual pre-
diction must be sufficiently faster than real time. To overcome
these challenges, we need to develop a system in which mea-
surements, actuators (or technologies for individual control
problems), and the digital twin, based on physics knowledge
and accumulated experimental data, are closely coupled and
complement each other.

We have introduced a control approach based on data
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assimilation (Data Assimilation and Control System, DACS)
[4] to achieve a digital twin control system for fusion plasmas.
Data assimilation (DA) is a statistical method for estimating
the state vector, which consists of the variables in a numeri-
cal model, based on observation data [5–7]. It can make the
behavior of the model similar to that of the actual system.
DACS is a DA framework that integrates digital twin adapta-
tion using real-time measurements and control estimation that
is robust to model and observation uncertainties. We are devel-
oping a data assimilation system, ASTI [4, 8, 9], based on the
DACS framework and an integrated simulation code, TASK3D
[10, 11]. ASTI approximates the probability distribution of
the state vector (state distribution) with many ensemble
members (simulations with slightly different conditions) and
performs time evolution and assimilation calculations. The effec-
tiveness of the DA-based control was demonstrated through
numerical experiments [4] and a simple control experiment
in Large Helical Device (LHD) [8].

In recent years, research on data-driven approaches for
plasma control (e.g., control of instability and avoidance of
sudden phenomena) has been active [12–15]. Our approach
has both physics-based and data-driven aspects to build a com-
prehensive control system in which many observations and actu-
ators are harmoniously combined. Observations compensate
for the digital twin’s imperfections to enhance the prediction

1403034-1 © 2025 The Japan Society of Plasma
Science and Nuclear Fusion Research



Plasma and Fusion Research: Regular Articles Volume 20, 1403034 (2025)

and control performance, and the digital twin interconnects
various observations to help the state estimation. In ASTI,
physical knowledge and control constraints can be easily taken
into account by incorporating them into the state vector and
the digital twin. ASTI can be applied to complex control with
multiple variables, considering both observable and unobserv-
able variables.

In this study, we extend ASTI for simultaneous predic-
tive control of temperature and density, considering electron
cyclotron heating (ECH), neutral beam injection (NBI) heat-
ing, and gas-puff as actuators. Real-time prediction of heat
transport in ECH plasmas has already been achieved in the
previous study [8]. In this study, we accelerate the computa-
tion of particle transport by developing a surrogate model to
evaluate the particle source due to neutral particles. We per-
form numerical experiments using ASTI to simultaneously
control the electron temperature profile and density of a vir-
tual LHD plasma. In addition, we investigate the control per-
formance by varying the hyperparameters and varying the
gaps between the digital twin and the actual system.

This paper is organized as follows. Section 2 describes
the DACS framework and the real-time prediction model of
helical plasma (TASK3D). Section 3 explains the numerical
experiments to demonstrate and investigate the control perfor-
mance. The results of the numerical experiments are shown
in Sec. 4. The conclusions are given in Sec. 5.

2. DA-Based Control for Helical Plasmas
2.1 Data assimilation framework for adaptive

model predictive control
Consider a control problem where control estimation and

measurement of the system state are performed at time inter-
val Δt. We use the discrete time ti = t0 + iΔt, where t0 denotes
the initial time. The DACS framework is based on the fol-
lowing state space model:xi + 1 = fi + 1 xi, vi + 1 , (1)

zi = ℎiz xi,wiz , (2)

ui* = Huxi +wiu, (3)

yi = ℎiy xi,wiy . (4)

The state vector at time ti, xi, is defined by

xi = x̃iui , (5)

where x̃i is part of the state vector containing the system state
and model parameters, which is used as the state vector in typ-
ical data assimilation. Vector ui is the control input that deter-
mines the time evolution of the system from time ti − 1 to ti.

Equation (1) is the system model that describes the time
evolution of the system, xi xi + 1. Here, fi + 1 is a time evo-
lution operator considering the system noise vi + 1 and corre-
sponds to a digital twin. In this study, we assume that ui is

constant in the prediction interval, and Eq. (1) can be broken
down asui + 1 = ui + vi + 1u , (6)

x̃i + 1 = f ̃i + 1 x̃i,ui + 1, ṽi + 1 . (7)

We add the system noise for control input, vi + 1u , to ui by
Eq. (6) before the time evolution calculation by Eq. (7). In
Eq. (7), ṽi + 1 is the system noise for x̃ and is added to x̃ before
or after the time evolution. Equation (2) represents the rela-
tionship between the state vector xi and target-state vector zi
considering the target-state noise wiz. In the same manner,
Eqs. (3) and (4) represent the relationships between xi and
optimal control input ui* with control-input noise wiu, and that
between xi and observation vector yi with observation noisewiy, respectively. The relation between xi and ui is written by
a matrix Hu from Eq. (5). Note that Eqs. (2), (3) and (4) are
referred to as “target-state model”, “control-input model”, and
“observation model”, respectively. In this study, we assume
that the system noise vi follows a Gaussian distribution with
zero mean and covariance matrix Qi, i.e., vi ∼ N(0,Qi). Sim-
ilarly, wiz, wiu, and wiy are assumed to follow the probability
distributions N(0,Riz), N(0,Riu), and N(0,Riy), respectively.
These covariance matrices are important hyper-parameters of
the control system that determine the control capability, as
discussed in Sec. 3.2.

The state distribution p(x) is approximated by an ensem-
ble consisting of {x(k)}k = 1k = n, where k and n are the index and
the number of ensemble members. The computations for the
ensemble in the DACS framework are divided into two main
processes: prediction and filtering (assimilation). The former
performs a time-evolution calculation for each ensemble mem-
ber based on the system model (1), and the ensemble approx-
imating the state distribution Δt ahead is obtained. In the
latter process, information imposition on a state distribution
is computed for system state estimation (adaptation) and con-
trol estimation. The ensemble approximating the state distri-
bution reflecting the information d, p(x|d), is obtained, whered = z,u*, or y. This process is performed based on Bayesian
filters (e.g., the ensemble Kalman filter [16] and the particle
filter [17]) for the information (z, u*, y) to be imposed
(assimilated) using the models (2)–(4).

The control estimation is executed by assimilating the
target state zi into the state distribution p(x) to obtain p(xi|zi)
(z-filter). We obtain the probability distribution of the control
input ui required to produce the target state zi, p(ui|zi), by
marginalizing the z-filtered distribution p(xi|zi) for xi. In this
study, the optimal control input ui* is defined as the expected
value of ui for the distribution p(ui|zi). The estimated control
input ui* is reflected to the state distribution by assimilatingui* into the predicted distribution (u-filter). The u-filtered dis-
tribution p(xi|ui*) represents the predicted distribution whenui* is input. In addition to control estimation, the system state,
including the model parameters, can be estimated by assimi-
lating the observation yi into the latest distribution (y-filter).
The DACS framework realizes adaptive predictive control by
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combining these operations on the state distribution: predic-
tion, z-filter, u-filter, and y-filter. See Ref. [4] for the detail
of the DACS framework and Sec. 3.2 for the specific control
algorithms employed in this study.

2.2 Real-time prediction of helical plasmas
We employ the integrated transport simulation code

TASK3D as a digital twin of helical plasma (the operator f in
Eq. (1)). This section gives an overview of TASK3D and the
extensions made to achieve real-time prediction of tempera-
ture and density. TASK3D treats the radial heat and particle
transport issues in a torus-shaped plasma as one-dimensional
(1D) problems for the normalized minor radius ρ. In this
study, we assume that the electron density and ion density pro-
files are the same, i.e., n = ne = ni. The particle and heat trans-
port equations for each electron and ion species are solved:∂∂t nV′= − ∂∂ρV′ |∇ρ| nV − ∇ρ|2 D∂n∂ρ + SV′, (8)

∂∂t 32nTsV′5/3= −V′2/3 ∂∂ρV′ ⟨|∇ρ|⟩nTs VKs + 32V
−⟨|∇ρ|2⟩32DTs∂n∂ρ − ⟨|∇ρ|2⟩nχs∂Ts∂ρ+PsV′5/3,

 (9)

where n and Ts are the density and temperature of the s-
species, and ⟨ ⟩ represents the magnetic flux surface average.
In addition, V is the plasma volume, and V′ = dV/dρ. The
equilibrium magnetic field is computed by the VMEC code
[18], which calculates the three-dimensional magnetohydro-
dynamics equilibrium. Here, we use a typical LHD magnetic
configuration: the major radius of the magnetic axis at the
vacuum is 3.6 m, and the magnetic field strength at the plasma
center is 2.85 T.

Coefficients D and χs are the particle and thermal diffu-
sivities, and the convection velocities V  and VKs are the parti-
cle and heat pinch velocities, respectively. The S and Ps terms
are the particle and heat source, respectively. The heating
power source Ps comprises external heating, power exchange
between species, and the loss term due to interaction with
neutrals. For real-time computation of ECH, we employ the
following simple model:

PeECH(ρ) = ξ pξ(ρ), (10)

pξ(ρ) = Aξexp − 12 (μξ − ρ)2σξ2 , (11)

where ξ is the index of gyrotron, and μξ and σξ are the corre-
sponding parameters determining the radial profile of the heat

deposition. The coefficient Aξ is determined from the input
power Pξ by

Pξ = 0
1pξ(ρ)V′(ρ)dρ. (12)

For real-time computation of NBI heating, we employ the
FIT3D-RC module [19]. This module evaluates the beam ion
birth profile using the Gaussian process regression model
applied to precomputation results by the Monte Carlo simu-
lation. It calculates the heat deposition and particle source
profiles based on the simple analytical solution of the Fokker-
Planck equation. The particle source S is primarily deter-
mined by the ionization of neutral particles evaluated by the
AURORA module [11, 20] of TASK3D. The AURORA mod-
ule calculates the component of S using the plasma profiles
and the density and temperature of neutral particles at the
plasma edge.

Real-time calculations are already possible for heat trans-
port considering ECH and NBI, but they have not yet been
achieved for particle transport. In TASK3D, the AURORA
module accounts for most of the computational time for the
particle transport. Although the AURORA module is essen-
tial for computing the time evolution of the density profile, it
cannot be used for real-time prediction because it is based on
the Monte Carlo method, which is computationally expen-
sive. To achieve real-time particle transport computation, we
have developed a neural network-based surrogate model of
AURORA. The input variables are the plasma profiles (Te,Ti, n) and the density and temperature of neutral particles at
the plasma edge (nn, Tn). Each profile has 60 radial grid
points; thus, the dimension of the input vector is 182. The
output is the particle source due to the ionization of neutral
particles, Sneu, (60 radial points). The surrogate model is built
by using a multilayer perceptron with four hidden layers
(182, 1,000, 1,000, 180 units). We employ ReLU as the acti-
vation function and Adam as the optimizer. This structure
was selected from a range of configurations with up to five
hidden layers and up to 1,000 units per layer. It was con-
firmed that increasing the number of parameters beyond this
structure does not significantly improve prediction accuracy.

To train the model, 500,000 input-output data sets were
used (400,000 as training data and 100,000 as test data). These
data sets were generated by the AURORA computation from
randomly generated input vectors. The input radial profiles
of Te, Ti, and n were generated using the following function
[21]: A(ρ) = c1tanh[−c2(ρ − c3)] + c4. (13)

The parameters c2 and c3, which determine the shape of the
radial profile, are randomly generated from uniform distribu-
tions (2 < c2 < 15 and 0.3 < c4 < 1). The parameters c1 andc4 are determined by the values A(0) and A(1), which are
also randomly generated from uniform distributions. The range
of each variable was set as follows:
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0.1 < Te(0),Ti(0) < 10 (keV),0.1 < Te(1),Ti(1) < 1 (keV),0.01 < n(0) < 1 (1020m−3),0.01 < n(1) < 0.1 (1020m−3),0 < nn < 2 (1017m−3),1 < Tn < 50 (eV).
Here, profiles where A(0) < A(1) were not used for the train-
ing. Furthermore, as a quarter of the input density profiles,
hollow profiles generated by the following function were used:

nh(ρ) = w1tanh[−6(ρ − w2)]+ w3tanh [−w4(ρ − 1)] + w5. (14)

The parameters w1, w3, and w5 are determined by the param-
eter H = (maxρn − n(0))/n(0) and randomly generated n(0)
and n(1). The parameters w2, w4, and H, which determine
the shape of the hollow profile, are randomly selected from a
set of reasonable values, (w2,w4,H) ∈ {(0.3, 2, 0.2), (0.3, 2,
0.4), (0.5, 4, 0.2), (0.5, 4, 0.4), (0.7, 6, 0.2), (0.7, 6, 0.4)}.

Figure 1 shows a test result of the surrogate model forSneu (ρ = 0.9). The coefficient of determination is 0.995, which
shows that the surrogate model can reproduce the AURORA
simulation results with high accuracy. Figure 2 shows the
TASK3D simulation results using the AURORA module and
the surrogate model. In the simulations, we assumed D(ρ) =
0.8 m2s−1 and the typical LHD magnetic configuration, with a
major radius of 3.6 m and a magnetic field strength at the
plasma center of 2.85 T. It can be seen that the results of the
integrated simulation using AURORA are reproduced with high
accuracy, both for the density profile as shown in Fig. 2(a)
and for the particle source as shown in Fig. 2(b).

The TASK3D simulation using the surrogate model takes
0.04 seconds to perform a particle transport calculation for
one second, while the simulation using the AURORA mod-
ule takes 9.5 seconds. Here, this calculation was performed
in a vector computer (NEC, SX-Aurora TSUBASA), and the
calculation of the Snue term in TASK3D was performed every
10 ms. The time required for particle transport calculations
has been significantly reduced. Even when coupling heat
transport considering ECH and NBI, the transport simulation
could be performed in 130 ms. This surrogate model has suf-
ficient computational speed and accuracy for our DA-based
control system. It enables real-time predictive control includ-
ing the plasma density.

3. Numerical Experiments to Control Virtual
LHD Plasma

We perform numerical experiments to control a virtual
plasma (hydrogen plasma) in LHD to demonstrate the effec-
tiveness of the DA-based control system and investigate the
dependence of the control performance on the hyperparameters.

3.1 Control problem
Consider simultaneous control of electron temperature

profile and density. As the actuators, we assume gas-puff to
control the density and ECH with two separate heating posi-
tions (around ρ = 0.1 and ρ = 0.4) to control the radial profile

Fig. 1. Comparisons between the AURORA simulation results (“Simula-
tion”) and the surrogate model prediction (“NN prediction”) ofSneu (1020 m−3s−1) at ρ = 0.9.

Fig. 2. Integrated simulation results of (a) the density and (b) the particle
source calculated by using the AURORA module (“Simulation”)
and the surrogate model (“NN”) in three cases: (i) nn = 1 × 1016 m−3,
(ii) nn = 5 × 1016 m−3, and (iii) nn= 1 × 1017 m−3.
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of the electron temperature. The ECH parameters in Eq. (11)
are set as shown in Table 1 based on the five gyrotrons
implemented in LHD. Here, we introduce the ECH power to
around ρ = 0.1, P0.1 = P1 + P2, and the power to around ρ =
0.4, P0.4 = P3 + P4 + P5. In addition, we introduce the
parameter G to simulate the gas-puff. We assume that the
neutral density at the plasma edge, nn, is determined by the
linear model, nn = 0.6 × G (1016 m−3).

Suppose that the electron temperature and density radial
profiles are available using the real-time Thomson scattering
measurement system in LHD [8, 22]. Table 2 shows the state,
target, and observation variables used in the numerical exper-
iments. The radial profile in the state vector is defined on 11
grid points (ρ = 0, 0.1, 0.2, …, 1), while the profile in
TASK3D is defined on 60 grid points. We put the parametersce, ci, d, and v into the state vector to consider the uncertain-
ties in the thermal and particle diffusivities and particle con-
vection velocity [9]. Denoting the coefficients used in
ordinary simulations by variables with ′, the transport param-
eters used in ASTI are defined by χe = ceχe′, χi = ciχi′, andD = dD′, V = V ′ + v. The base models for transport param-
eters in ASTI are assumed as follows:χe′(ρ) = χeconst, (15)

χi′(ρ) = Ci TieB ρia ∇TiTi a , (16)

Table 1. ECH parameters employed in the numerical experiments.

ξ μξ σξ available Pξ (MW)

1 0.1 0.015 0, 0.15, 0.3
2 0.1 0.02 0, 0.2, 0.4
3 0.4 0.025 0, 0.2, 0.4
4 0.4 0.03 0, 0.3, 0.6
5 0.4 0.03 0, 0.3, 0.6

Table 2. State, target, and observation variables with their dimensions
in the vectors (Mj).

Variable Mj

x̃
Te Electron temperature 11Ti Ion temperature 11n Density 11ce Factor for electron thermal diffusivity 11ci Factor for ion thermal diffusivity 11d Factor for particle diffusivity 11v Additional particle convection velocity 10

u P0.1 ECH input power for ρ = 0.1 1P0.4 ECH input power for ρ = 0.4 1G Gas-puff input 1

z Te, ρ = 0 Electron temperature at ρ = 0 1Te, ρ = 0.25 Electron temperature at ρ = 0.25 1nρ = 0.25 Electron density at ρ = 0.25 1

y n Density 11Te Electron temperature 11

D′(ρ) = Dconst, (17)

V ′(ρ) = 0, (18)

where B, ρi, and a are the magnetic field strength, the ion
Larmor radius, and the plasma minor radius, respectively. We
set the constant parameters as χeconst = 2 (m2/s), Ci = 0.57,
and Dconst = 1 (m2/s).

3.2 Control algorithm
We have constructed an algorithm of adaptive model

predictive control using the DACS framework for the numer-
ical experiments. The control and observation interval Δt is
set to 0.3 seconds, considering the computation time of the
prediction and the filtering, the time delay of the Thomson
scattering measurement, and the communication time. The
algorithm has been constructed so that the measured infor-
mation is most quickly reflected in the control estimation. It
comprises the following steps on the state distributions.

• Predictionp xi y0: i − 1,u0: i* p xi + 1 y0: i − 1,u0: i* , (19)

• y-filterp xi + 1 y0: i − 1,u0: i* p xi + 1 y0: i,u0: i* , (20)

• z-filterp xi + 1 y0: i,u0: i* p ui + 1 y0: i,u0: i* , zi + 1 , (21)

• u-filterp xi + 1 y0: i,u0: i* p xi + 1 y0: i,u0: i + 1* . (22)

Here the subscript t1 ∶ t2 denotes all the timings in [t1, t2].
Given the distribution p(xi | y0: i − 1,u0: i* ), the prediction step
computes the time evolution of the state distribution top(xi + 1 | y0: i − 1,u0: i* ) based on the system model. This step can
be performed by computing the time evolution of each ensem-
ble member approximating the distribution p(xi | y0: i − 1,u0: i* ).
After the next observation yi is obtained, ASTI assimilates
the observation to the predicted distribution using the y-filter
and optimizes the state vector (adaptation). After the y-filtering,
ASTI assimilates the target zi + 1 to the y-filtered distribution
and determines the next control input byui + 1* = E ui + 1 y0: i,u0: i* , zi + 1 . (23)

This control input is sent to the actuators immediately after
the z-filtering. This determined control input information is
reflected in the y-filtered distribution using the u-filter. This
u-filtered distribution p(xi + 1 | y0: i,u0: i + 1* ) is the distributionΔt ahead from the given distribution p(xi | y0: i − 1,u0: i* ); thus
this control algorithm can proceed to the next prediction step.
In this study, we implement all filters using the EnKF and
take 390 ensemble members. This is the maximum number
of ensemble members that can be computed by the actual
DA-based control system in LHD [8].

We perform only observation assimilation with a fixed
control input uinit = (P1,P2,G) = (0.3, 0.4, 1) during the first
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phase t < 2.1 seconds to get the digital twin close to the
actual system (virtual LHD) at the beginning of control (2.1
seconds). During this initial adaptation phase, the system
noise is not applied to the control input. ASTI assimilates the
observations up to 1.8 seconds, after which the system noise
is added to the control input, and the control estimation
begins. Subsequently, the control estimation starts at 2.1 sec-
onds to produce the target state.

The covariance matrices Qi, Riz, Riu, and Riy are the key
parameters determining the overall control performance. The
covariance matrix to generate the initial ensemble members,Vinit, is also required. In the numerical experiments, diagonal
matrices are used for these covariance matrices. The standard
deviations of Vinit, Qi, and Riu are set as shown in Table 3. We
introduce the parameter σQ to vary the system noise level for
the model parameters. System noise for u is an important
parameter determining the range of control inputs considered
in a single control estimation and the change rate of u*. The
standard deviations of the noise for u are set to sufficiently
large values to track the target state. The control input noisewu, which represents the uncertainty in the actually applied
control input, affects the assimilation of u* into the state dis-
tribution (u-filter). In many cases, the variance can be set
sufficiently small within the range that ensures stable data
assimilation, as shown in Table 3. The covariance matrix Ry
determines the effect of the observed information on the state
distribution and affects the adaptation performance. The
standard deviation of the observation noise is assumed to be
proportional to the difference between the observation and
mean of the state distribution [4, 9],Riy ll = ry2 yi − Hyxi l2, (24)

where xi is the mean of the ensemble approximating p(xi |y0: i − 1,u0: i* ). The subscripts ( )ll and ( )l denote the l-th diago-
nal component and the l-th element of the vector.

The parameters ry in Eq. (24), the standard deviation of
the system noise for the model parameters (σQ), and the stan-
dard deviation of the target noise (σRz) are set or varied
according to numerical experiments. Note that the same value

Table 3. Standard deviations of the initial distribution (σinit), system
noise (σsys), and control-input noise (σRu). The values with %
as the unit represent the rate for determining the standard
deviation in proportion to the state distribution mean.

Variable σinit σsys σRu
x̃

Te 15% 5%Ti 15% 5%n 15% 5%ce 0.1 σQci 0.1 σQd 0.1 σQv 0.1 m/s 0.1 m/s

u P0.1 0 0.3 MW 0.03 MWP0.4 0 0.3 MW 0.03 MWG 0 0.3 0.05

of σRz is used for the target variables Te, ρ = 0, Te, ρ = 0.25, andnρ = 0.25 (unit is keV or 1019 m−3). The initial ensemble means
of Te, Ti, and n are set to the steady-state radial profiles cal-
culated by the TASK3D simulation for the initial input uinit.
The initial mean profiles of ce, ci, and d are set to 1, and that
of v is set to 0.

3.3 Virtual LHD plasma
The virtual LHD plasma is generated in numerical space

using TASK3D and controlled by ASTI, which implements
the control algorithm described in the previous section. To
create gaps between the digital twin and the actual system
(virtual LHD), transport models different from those employed
in ASTI are used in the virtual LHD plasma. In this paper,
we consider two models of thermal diffusivity depending onTe, χe(Te), as shown in Fig. 3. Model 1 is a model in which
the thermal diffusion increases linearly with the electron
temperature, and model 2 is the opposite. Both models make
the diffusion term nonlinear. Furthermore, the particle diffu-
sivity in the virtual plasma is defined by D = (2/3)χe. For
simplicity, other conditions are aligned with those used in
ASTI. When observing the virtual plasma, ASTI obtains an
observation vector y, which is created by adding white noise
as the measurement error to the radial profiles of the virtual
plasma. The white noise is sampled from a Gaussian distribu-
tion with a standard deviation of 3% of the simulation value.

4. Results
4.1 Control performance to control the virtual

plasma
First of all, we show the results of the numerical experi-

ments with σQ = 0.15, σRz = 0.1, and ry = 0.6. We set the tar-
get state as zi = (Te, ρ = 0,Te, ρ = 0.25,nρ = 0.25) = (2.5, 2.0, 1.5).
Figure 4 shows the control results of the virtual plasma with
model 1. ASTI successfully adapts to the virtual plasma by
the initial adaptation phase up to 2.1 seconds. After the start of

Fig. 3. Thermal diffusivity models employed in the virtual LHD plasma.
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the control, oscillations in Te and n are observed up to 4 sec-
onds in Figs. 4(a)–(c). This is caused by a change in the Te
radial profile, which changes the diffusivities and widens the
gap between the digital twin and the virtual plasma. This gap
reduces the control estimation performance and creates oscil-
lations in the control inputs, as shown in Figs. 4(d) and (e).
This gap is gradually narrowed by the assimilation of obser-
vations, and the virtual plasma state converges to the target
state with good accuracy from 4 seconds.

Figure 5 shows the radial profiles of Te, χe, n, and D at
6 seconds. ASTI predicts the Te and n profiles with high
accuracy through optimization of χe and D. While ASTI pre-
diction of the thermal diffusivity is in good agreement with that
of the virtual plasmas as shown in Fig. 5(b), the reproducibil-
ity of the particle diffusivity at ρ < 0.5 is low in Fig. 5(d).
This is because the density gradient near the center is close to
zero, which makes the estimation of the diffusivity difficult.

This may need to be addressed for accurate state estimation
but is not a major problem in terms of prediction.

Table 4 shows the computation time required for Δt =
0.3 seconds on the vector computer in the ASTI-centered
control system built on LHD (NEC SX-Aurora TSUBASA,
16VE: 128 parallel processes). This computation was per-
formed for 384 (∼390) ensemble members; thus, one process
computed 3 ensemble members (TASK3D simulations). All
filter calculations (EnKF) were performed in a single process.
The total computation time is 134 milliseconds, less than half
the real time (300 milliseconds). Using a larger computer that
can assign one ensemble member to one process can reduce
the computation time required for the prediction step to
approximately 40 ms. ASTI can perform real-time predictive
control for control problems in the transport time scale, even
with the current computer.

Next, we show the control results for the virtual plasma

Fig. 4. Results of a numerical experiment for the virtual plasma (model 1). (a–c) Control results of Te(ρ = 0), Te(ρ = 0.25), and n(ρ = 0.25),
respectively. The plotted values labeled “Prediction” correspond to the expected values of the predicted distribution for t ≤ 2.1 seconds and those
of the u-filtered distributions for t > 2.1 seconds. The shaded areas represent a single standard deviation of the distributions. The plotted values
labeled “Observation” are those obtained from the virtual plasma. (d) Estimated control input of the ECH powers P1 (labeled “axis”) and P2
(labeled “ρ = 0.4”). (e) Estimated control input of the gas-puff parameter G.
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with model 2. In this model, a higher electron temperature
results in a lower diffusivity. The control results are shown in
Fig. 6 in the same manner as Fig. 4. As observed in the case
of model 1, oscillations emerge at the start of the control pro-
cess. However, the virtual plasma also converges to the target
state after 4 seconds by compensating the gap through the
observation assimilation. Figure 7 shows the radial profiles
of Te, χe, n, and D at 6 seconds. It can be seen that the radial
profiles are also predicted (reproduced) with high accuracy
in model 2.

The control results for the target (Te, ρ = 0, Te, ρ = 0.25,nρ = 0.25) = (2.5, 2.0, 1.0) are shown in Fig. 8, and those for
the target (2.5, 2.0, 2.0) are shown in Fig. 9. Model 1 is
employed for the diffusivity model of the virtual plasma in
these numerical experiments. In both cases, the virtual plasma
state successfully approaches the target state. The control
seems to be more stable when controlling toward nρ = 0.25 =
2.0 than toward nρ = 0.25 = 1.0. This is because the electron
temperature becomes more sensitive to changes in ECH power
as the density decreases. A larger electron temperature response
increases the gap between the diffusivity in ASTI and that in
the virtual plasma, reducing the accuracy of the control esti-
mate. Thus, the control of one variable can be destabilized by
the control of other variables. This destabilization can be
mitigated by setting either target-state noise or observation
noise large, as discussed in Sec. 4.2.

Figure 10 is the scatter plots of the ensemble members
at a z-filter step. The ensemble of the y-filtered distribution
(labeled “Prediction”) is colored by the log-likelihood p(zi|xi).
We can see that ASTI can capture regions of the control

Table 4. Computation time required for one time step (Δt = 300 ms).

Step computation time (ms)

Prediction 120
y-filter 6
z-filter 4
u-filter 4

input with high likelihood and find a proper control input for
each target state. The numerical experiments using standard
parameter values demonstrate the validity of the DA-based
control approach for the adaptive predictive control of elec-
tron temperature profile and density.

4.2 Dependence of control performance on hyper-
parameters
In this subsection, we discuss the hyperparameter

dependence of the control accuracy of ASTI using numerical
experiments. The settings of the experiments are the same as
in Sec. 4.1, except for σRz, ry, and σQ. We set the target state
as zi = (Te, ρ = 0,Te, ρ = 0.25,nρ = 0.25) = (2.5,2.0,1.5) and use
model 1 as the diffusivity of the virtual plasma.
4.2.1 Target-state noise and observation noise

The target-state noise affects the performance of the
z-filter and determines the accuracy and speed with which the
actual system state approaches the target state. A large value
of σRz weakens the z-filter’s force to attract the prediction
distribution (y-filtered distribution in this control algorithm)
to the target state, which results in a gradual change in the
actual system state. The observation noise determines the
performance of the y-filter (adaptation). A large value of ry
slows the update of model parameters and makes the adapta-
tion robust to outlier observations. To investigate the depen-
dence of the control performance on the target-state noise and
the observation noise, we have performed numerical experi-
ments varying σRz and ry. The system noise parameter σQ
was fixed at 0.15.

Figure 11 shows the σRz- and ry-dependence of the control
performance as root mean square percentage error (RMSPE)
between the observation and target state of Te(ρ = 0). Each
line is smoothed by a moving average of window size 0.2.
The RMSPEs tend to increase for large σRz. This trend is
expected, as σRz determines the accuracy in achieving the
target state. It should be noted that the trend weakens when
the parameter ry is small (ry = 0.2 and 0.4). This may be
because a strong y-filter reduces the uncertainty in the digital
twin, making the control estimation by the z-filter more

Fig. 5. Radial profiles of (a) electron temperature, (b) electron thermal diffusivity, (c) density, and (d) particle diffusivity at 6 seconds in a numerical
experiment for the virtual plasma (model 1). The plotted values labeled “Prediction” represent the expected values of the u-filtered distribution.
The shaded areas around the radial profiles represent a single standard deviation. The profiles labeled “Virtual LHD” represent true profiles in
the virtual LHD plasma without measurement error. The lines labeled “w/o DA” in (b) and (d) are the diffusivities in ASTI without the DA
optimization.
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accurate. Moreover, large values of σRz slow down the rate of
change of the plasma state (Te) and help keep the gap
between the digital twin and the virtual plasma small. Thus,
while large σRz helps the digital twin adapt to observations, it
temporarily degrades the control performance.

While the small σRz and small ry impose higher accu-
racy on the control estimation and the adaptation, they have
the risk of destabilizing the control. Figure 12 shows thery-dependence of the control performance for small target-
state noise (σRz = 0.02, 0.06, 0.1). The RMSPEs increase sig-
nificantly when both σRz and ry are small. The control results
for the case of σRz = 0.06 and ry = 0.1 are shown in Fig. 13.
The oscillation that occurs at the start of control is not

damped until the end. The z-filter works to expand the gap
between the digital twin and the actual plasma when the
model parameters (e.g., ce) depend on the controlled vari-
ables (Te and n in this case). This instability arises because
the z-filter, which tries to quickly get the plasma state close
to the target state, and the y-filter, which tries to quickly
adapt the digital twin to the actual plasma, clash and work to
maintain (expand) the gap. We can prevent this control insta-
bility by making the target-state noise or the observation
noise larger. In other words, we should weaken either the
control estimation or the adaptation.
4.2.2 System noise for model parameters

The system noise for the model parameters controls the

Fig. 6. As Fig. 4, but for the virtual plasma with model 2. (a and b) Control results of Te(ρ = 0), and n(ρ = 0.25), respectively. (c and d) Estimated
control inputs of the ECH powers and the gas-puff parameter.

Fig. 7. As Fig. 5, but for the virtual plasma with model 2.
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uncertainty of the digital twin in ASTI and affects the control
estimation and the adaptation performance. We have per-
formed numerical experiments varying σQ to investigate the
dependence of the control performance on the system noise.

The other noise parameters σRz and ry are fixed at 0.1 and
0.6, respectively.

Figure 14 shows the σQ-dependence of the control per-
formance as the RMSPEs of Te(ρ = 0), and Fig. 15 shows a

Fig. 8. Control results of (a) Te(ρ = 0) and (b) n(ρ = 0.25) for the target (Te, ρ = 0,Te, ρ = 0.25,nρ = 0.25) = (2.5, 2.0, 1.0).

Fig. 9. Control results of (a) Te(ρ = 0) and (b) n(ρ = 0.25) for the target (Te, ρ = 0,Te, ρ = 0.25,nρ = 0.25) = (2.5, 2.0, 2.0).

Fig. 10. Scatter plots of the ensemble members in the z-filtering step at 5.1 s in numerical experiments for the target density of (a) 1.0 × 1019 m−3, (b)
1.5 × 1019 m−3, and (c) 2.0×1019 m−3. The ensembles labeled “Prediction” represent the y-filtered ensembles. Each control input to which
ensemble members are assigned is colored by the median of the log-likelihoods for the target state. The ensembles labeled “Filtered” represent
the z-filtered ensembles, and the x points represent the mean of the z-filtered ensemble.
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comparison of the radial profiles of the electron thermal dif-
fusivity in ASTI and those in the virtual plasma. The RMSPE
is small for 0.1 ≤ σQ ≤ 0.4, as shown in Fig. 14. For a smallσQ case, the uncertainties considered in ASTI become small,
and ASTI can not adequately track changes in the diffusivity
of the virtual plasma, as shown in Fig. 15(a). The loss of
control accuracy is related not only to the system noise added
to the model parameters but also to the system noise added to
the control inputs. When the system noise to the control inputs
is significantly larger in comparison to that to the model param-
eters, the relationship between the model parameters (e.g., ce)
and the observation variables (e.g., Te) in the ensemble

becomes difficult to identify at the y-filter.
On the other hand, the control accuracy also decreases

when σQ is large, as shown in Fig. 14. It can be seen that the
adaptive capacity is also reduced when the system noise is
large from Fig. 15(c). The y-filter updates the latest pre-
dicted distribution by assimilating the observation to the joint
distribution of the state variables at the latest time and the
observation time. Therefore, large system noise added between
the two timings can break the relationship of the state variables
between the two timings and reduce the adaptation capacity.
Furthermore, a large system noise to the model parameters
can reduce the control estimation (z-filter) performance, just

Fig. 11. RMSPEs between the observation and the target state ofTe(ρ = 0) in numerical experiments with various σRz and ry
values.

Fig. 12. RMSPEs between the observation and the target state for
small σRz.

Fig. 13. Results of a numerical experiment for the virtual plasma (model 1) using σRz = 0.06 and ry = 0.1. (a) Control results of Te(ρ = 0). (b) Estimated
control input of the ECH powers P1 (labeled “axis”) and P2 (labeled “ρ = 0.4”). (c) Estimated control input of the gas-puff parameter G.
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as a large system noise to the control input can reduce the
adaptation (y-filter) performance. Figure 16 shows the scatter
plots of the ensemble members at a z-filter step. In Figs.
16(a) and (b), ASTI can capture regions of the control input
with high likelihood and find a proper control input. How-
ever, in Fig. 16(c), ASTI is missing the proper control input
because the digital twin has too large uncertainties.

Fig. 14. RMSPEs between the observation and the target state ofTe(ρ = 0) in the numerical experiments with various σQ
values.

These numerical experiments indicate that the system
noise must be set considering the balance between the noise
magnitude to the model parameters and that to the control
input and the gap between the digital twin and the actual sys-
tem. However, there is no need to be nervous about setting
the noise parameters. The DA-based control is generally sta-
ble over a wide range of noise parameters (e.g., Fig. 14).
Unless excessively large or small noise is required, the adap-
tation aids the control estimation, and the actual system state
is expected to converge to the target state. Methods can be
developed to adjust the noise intensities according to the sit-
uation and the nature of the target system. This is an issue to
be addressed in the future.

5. Conclusion
In this study, we developed a real-time predictive con-

trol system based on DA for heat and particle transport in
helical fusion plasmas and clarified the fundamental proper-
ties of the DA-based control approach through numerical
experiments. First, we extended the integrated simulation
code TASK3D to implement a digital twin that can compute
the thermal and particle transport of helical plasmas in real
time. To enable real-time calculation of the particle source from
neutral particles, we built a surrogate model for the AURORA
code using a neural network. This surrogate model accurately
reproduces the AURORA calculations and operates sufficiently

Fig. 15. Radial profiles of electron thermal diffusivity at 5.1 s in the numerical experiments with (a) σQ = 0.05, (b) σQ = 0.15, and (c) σQ = 0.6.

Fig. 16. As Fig. 10, but for the numerical experiments with (a) σQ = 0.05, (b) σQ = 0.15, and (c) σQ = 0.6 at 5.1 s.
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faster than real time. TASK3D can now simulate the time evo-
lution of the helical plasma, including ECH, NBI heating, and
gas-puff fueling, faster than real time. A real-time computa-
tional model for pellet injection is currently under development.

To demonstrate and investigate the control performance
of the DA-based control system, we conducted numerical
experiments to control a virtual LHD plasma using the real-
time TASK3D as a digital twin of ASTI. In these numerical
experiments, the electron temperature radial profile and the
density were controlled in the presence of electron tempera-
ture and electron density measurements, assuming an actual
situation of the LHD plasma control. We demonstrated, for
several target states and virtual plasma models, that ASTI
can bring the virtual plasma state close to the target state
while bridging the gap between the digital twin and the vir-
tual plasma. It was shown that the time required for ASTI to
perform real-time predictive control was less than half of the
real time. This indicates that simultaneous control of temper-
ature profile and density in LHD is already feasible with the
current ASTI. Furthermore, the numerical experiments clari-
fied the effects of target-state noise, observation noise, and
system noise on control performance. The relationship between
the noise parameters and the control accuracy obtained in
this study is an important finding for enhancing the stability
and robustness of the DA-based control.

Throughout the numerical experiments, we implemented
all filters using the EnKF. When the state variables are
strongly coupled through nonlinear interactions and the state
distribution deviates significantly from a Gaussian distribu-
tion, other filters (e.g., the PF) should be considered for imple-
mentation. The PF can address control problems involving
strong nonlinearities, such as phase transitions. Moreover,
the PF is expected to suppress the oscillations observed in
the numerical experiments and facilitate faster convergence
of the plasma state to the target state. The DA-based control
using the PF will be discussed in a future paper.

The DA-based control approach enables the harmonious
integration of measurement, heating, fueling, and simulation,
providing a flexible platform for digital twin control of

future fusion reactors. The ASTI extended in this study has
already been incorporated into the LHD control system, and
experimental plans for advanced plasma control in LHD
using various actuators are underway. Although ASTI has
been developed for helical plasmas, we are also working to
extend it for tokamak plasma control.
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