
Plasma and Fusion Research: Regular Articles Volume 20, 1403026 (2025)

Prediction of Plasma Confinement Indices
by Gaussian Process Regression
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To optimize the design of a helical fusion reactor by varying the shape of the magnetic coils, several
requirements related to the performance of the reactor should be satisfied under various constraints. To address this
multi-objective optimization problem, we utilized Gaussian process regression (GPR) for machine learning to develop
a surrogate model capable of predicting the dependence of the objective functions on the parameters representing the
coil shape. This study demonstrates that the dependence of objective functions, such as plasma volume and the
Mercier criterion, on the shape of helical coil windings can be predicted by GPR.
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1. Introduction
To realize a commercial helical fusion reactor, it is nec-

essary to choose a device that simultaneously satisfies vari-
ous requirements [1–3] for a wide variety of magnetic field
configurations. These include the conditions for the confine-
ment performance of the reactor and engineering constraints.
For example, the former includes MHD stability, suppression
of neoclassical and turbulent transport, and high fusion
energy gain. The latter includes the distance between the coils
and plasma to ensure blanket space, distance between helical
coils, and maximum curvature and torsion of the supercon-
ducting coils [4]. In addition, the construction and operation
of a reactor must satisfy various constraints such as seismic
resistance and radiation protection and must be economically
feasible. Thus, the fusion reactor design is an example of a
multi-objective optimization problem. In such cases, there
are many trade-off relationships between requirements, and it
is generally difficult to understand the relationships between
a large number of design parameters and objective functions.
In fusion reactor design, the parameter dependence of such
complex and nonlinear objective functions must be explored,
and thus, a reasonable design can be achieved. The ultimate
goal of our study is to solve a multi-objective optimization
problem using machine learning.

In previous studies on magnetic field configuration opti-
mization, it has been a general method that the shape of the
last closed-flux surface (LCFS) was varied and the MHD sta-
bility and the reduction of plasma transport were optimized.
The shape of the coils that produced the optimized magnetic
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configuration was then considered as another optimization
problem [5, 6]. Most of these studies aimed to achieve a cer-
tain symmetry in the magnetic field configuration because it
is theoretically known that configurations with good symme-
try in Boozer coordinates have low neoclassical transport
levels (e.g., quasi-axisymmetric and quasi-helically symmet-
ric configurations) [7].

This study proposes a different approach that uses the
winding law of helical coils as a parameter to generate vari-
ous magnetic-field configurations and optimize the objective
functions. We consider a variety of helical coil shapes differ-
ent from simple ones, such as LHD, and attempt to predict
magnetic field configurations that satisfy the aforementioned
requirements using Gaussian process regression (GPR). The
advantage of this method is that, by imposing engineering
constraints on the coils in advance, it is possible to search for
optimized configurations from a large number of technically
feasible ones. A previous study shows that various magnetic
field configurations, including quasisymmetric configura-
tions, can be created using helical coils with more degrees of
freedom compared to conventional devices [8]. In addition,
the performance of helical fusion reactors was evaluated
using a modified winding law for LHD-like helical coils [1].
Therefore, it is of practical significance to consider a contin-
uous winding coil method to optimize fusion reactors. Gener-
ally, the machine learning methods used for optimization
include the gradient method, genetic algorithms (GA), neural
networks (NN), and Gaussian process regression (GPR). In
research on optimized reactor designs, gradient-based methods
have been adopted in STELLOPT and FOCUS codes [9, 10],
for example. The optimization of fusion reactors using a GA
was proposed in a recent study [11]. The goal of our research
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is to perform a multi-objective optimization of magnetic field
configurations using GPR as a surrogate model to predict the
confinement performance. As a preparatory step, we imple-
mented GPR for certain objective functions to be used in the
optimization study and evaluated the prediction performance
of GPR. The objective functions selected were plasma volume,
Mercier criterion, and Shafranov shift, which are indicators
of MHD stability. Moreover, the feasibility of predicting the
dependence of these objective functions on coil-shape param-
eters using GPR was investigated.

The remainder of this paper is structured as follows:
Sec. 2 describes the method, including the calculation of the
magnetic configurations and objective functions, and GPR.
Section 3 presents the results of calculation and GPR. Finally,
the results are summarized in Sec. 4.

2. Method
2.1 Objective of optimization

We considered the design of a fusion reactor with a pair
of helical coils based on LHD [12]. The characteristics of the
plasma confinement of LHD are that the magnetic configura-
tion in which the magnetic axis shifts outward has good
MHD stability, while the inward-shifted one has good parti-
cle confinement and a low neoclassical transport level [13].
One of our objectives was to determine a possible configura-
tion in which both good MHD stability and low neoclassical
transport could be achieved by changing the helical coil
winding. A previous study showed that a continuously wind-
ing coil can create a quasi-isodynamic configuration [8]. Our
research goal is to create a surrogate model for optimized
configuration research by adopting GPR to learn the depen-
dency of objective functions, such as MHD stability and neo-
classical transport, on the coil shape parameters. This study
aimed to verify whether such learning is possible.

2.2 Calculation of various magnetic configurations
This section explains the method for producing the train-

ing data. The winding law of a helical coil in the (R, Z, ϕ)-
coodinates is given as follows:R(ϕ) = Rax(ϕ)+ r00ϵrcos λ(ϕ) + αrsin λ(ϕ) + ϕ0r1 + ϵ2rcos λ(ϕ) + ϕ2r ,Z(ϕ) = Zax(ϕ)+ r00ϵzsin λ(ϕ) + αzsin(λ(ϕ) + ϕ0z )[1 + ϵ2zcos λ(ϕ) + ϕ2z ],Rax(ϕ) = R00 1 + ϵaRcos λ(ϕ) + ϕaR ,Zax(ϕ) = R00ϵaZsin λ(ϕ) + ϕaZ ,λ(ϕ) = Nϕ + ϕ00.

 (1)

The parameters mean as follows: ϵr and ϵz are magnifi-
cations of the minor radius of the helical coil, ϵ2r and ϵ2z are
the scalar values to provide the bumpiness of helical wind-
ings, αr and αz are the helical pitch modulation parameters,

and ϕ0r, ϕ0z, ϕ2r, and ϕ2z are the relative initial phases,
respectively. In addition, λ(ϕ) represents the phase angle of
the helical coils. Another coil is given by a symmetric law
(R(ϕ), −Z(ϕ), −ϕ), which makes the produced magnetic
field stellarator symmetry. There are two pairs of circular
vertical field coils (OV and IV) of which positions are fixed
at (R, Z) = (5.75, ± 1.60) and (1.70, ± 1.00), respectively.
The LHD is equipped with three pairs of vertical field coils;
however, one of the pairs was omitted for simplicity. FFHR-c1,
which is a design of LHD-like reactor, also omits one of
these pairs [1].

The range of parameters in the law is listed in Table 1,
where OV and IV are the magnification factors for the coil
currents of the OV and IV coils, respectively. The base con-
stant parameters are: R00 = 3.90 m, r00 = 0.975 m, ϕ0 = 90°.
The coil current of the helical coils is 5.636 MA, and the
base values for the OV and IV coil current are −3.615 MA and
3.013 MA, respectively, where the positive sign indicates the
counter-clockwise direction when the device is viewed from
the top. In this study, the helical coil current is kept constant.
The “base case,” defined as a configuration that closely
resembles the shape of the LHD, has the following param-
eters: αr = αz = 0.1, ϵr = ϵz = 1.0, ϵ2r = ϵ2z = 0.0, and ϕ0r =ϕ0z = 0.0.

Engineering constraints are imposed on the distance
between the helical coils, between the helical coil and the
vertical field coil, and between the helical coil and the LCFS
of the plasma. We also imposed an upper limit on the curva-
ture and torsion of the helical coils and a lower limit on the
plasma volume. The constraints are as follows: the maximum
curvature κlim = 3.0 m−1; the maximum torsion τlim = 20 m−1,
the maximum length of helical coils is 100 m, the minimum
distance between helical coils is 0.4 m, and the maximum
distance between them on a ϕ = const. plane is 4.0 m, and the
minimum distance between the helical coils and LCFS is
0.15 m. The constraints κlim and τlim are not strictly imple-
mented, as the maximum values of these parameters for the
LHD helical coils are roughly estimated to be 0.7 and 1,
respectively, assuming an HTS tape width ℎ = 5 mm. τlim = 20
is estimated from the evaluation of the constraints for the edge
strain of HTS, ϵ ≃ 0.5(ℎτ)2 < 0.005 [4, 14]. The minimum

Table 1. Variable parameters in the coil shape calculation.

Parameter Range

OV 0.70, 0.80, 0.90, 1.00, 1.10, 1.20

IV 0.80, 0.90, 1.00
αr −0.20, −0.10, 0.00, +0.10, +0.20
αz −0.20, −0.10, 0.00, +0.10, +0.20
ϵr = ϵz 1.00, 1.10, 1.20
ϵ2r = ϵ2z 0.00, 0.10, 0.20, 0.30

ϕ0r −10.0, 0.0, +10.0

ϕ0z −10.0, 0.0, +10.0

ϕ2r = ϕ2z
0.0, 15.0, 30.0, 45.0, 60.0, 75.0, 90.0, 105.0, 120.0,
135.0, 150.0, 165.0, 180.0
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plasma volume is set at 8.0 m3. As a reference, the LHD vol-
ume is approximately 25 m3. However, in the parameter scan
demonstrated in Sec. 3, the range of coil parameters was
restricted in reality only by the plasma volume because we
adopted loose limits on the distances, coil curvature, and tor-
sion. In the present test, ϵaR and ϵaZ were fixed to zero to
reduce the dimension, and we limited parameters to ϵr = ϵz =ϵ, ϵ2r = ϵ2z = ϵ2, and ϕ2r = ϕ2z = ϕ2. To study the beta depen-
dence, the central beta values in MHD equilibrium calcula-
tions are varied, β =0.5%, 1.5%, 2.5%. We did not try higher-β
case because the calculation at the large beta value is not reli-
able since we used the fixed boundary calculation of VMEC
[15]. In the parameter scan, the calculation of degeneracy
cases was omitted. The degeneracy is, for example, in the
case with ϵ2r = 0, the value of ϕ2r can be ignored. In such a
case, only one representative case (ϕ2r = 0) is calculated and
the same result is referenced to for ϕ2r ≠ 0 cases to learn the
dependence of objective functions by GPR.

In the present method, to vary the configuration, some
of the generated magnetic configurations had large magnetic
islands. We developed a method to detect and remove them
by image recognition of the Poincaré plots of magnetic field
lines [16]; however, we did not use it in the present study for
simplicity. Thus, the training data contained relatively large
magnetic islands. However, in the MHD equilibrium calcula-
tion using the ideal MHD code VMEC, nested flux surfaces
without magnetic islands is obtained even if there are mag-
netic islands in the vacuum magnetic field.

2.3 Objective functions
The objective functions chosen here to demonstrate the

prediction capability of the GPR are the plasma volume (V),
minimum value of the Mercier criterion in the minor radius
direction (DMerc min ), and Shafranov shift (S). The input
parameters for the GPR specify the helical coil shape, as
shown in Table 1. Because the Mercier criterion,DMerc > 0, (2)

is a condition for ideal MHD stability [17], we treat its mini-
mum value in the minor radius direction DMerc min  as an
objective function such that the entire plasma volume
becomes MHD stable. Here, we observe DMerc min  in the
range 0.15 < (r/a)2 < 0.95. This is due to the unreliability of
the calculation of DMerc in the VMEC near the magnetic axis
and LCFS, as highlighted in [18]. The Shafranov shift is
defined as

S ≡ Rax, avg(β) − Rax, avg(0.0)a , (3)

where Rax, avg(β) is the averaged position of magnetic axis in
the major radius direction at each β value, Rax, avg(0.0) is one
at β = 0.0, and a is the average of the minor radius. The
Shafranov shift is not a direct index of plasma confinement,
but the variation in the magnetic configuration is smaller
because the shift is smaller in the high-beta case. Therefore,
we chose the value of S as a candidate for the optimization

index. In this study, we did not use any indices for neoclassi-
cal and turbulent transport because the cost of evaluating
their objective functions is relatively high.

2.4 Gaussian process
In this section, we briefly describe the Gaussian process.

For N predictions y = y1, …, yN , the linear regression
model y = Φ x ⋅ w is used. Here, xi, i = 1, 2, …, N are the
input parameters, and w = w1, w2, …, wL  is the weight vec-
tor, and

Φ x = ϕ1 x1 ⋯ ϕL x1⋮ ⋱ ⋮ϕ1 xN ⋯ ϕL xN  (4)

is a design matrix, and ϕl(x) = exp x2/σl2  is a feature vec-
tor. Assuming that w follows Gaussian distribution, w ∼N 0, λ2I , the expectation value of y follows a multivariate
normal distribution,y ∼ N 0, λ2ΦΦT . (5)

Instead of evaluating a covariance matrix λ2ΦΦT = K, a kernel
function Kn, n′ = ϕ xn Tϕ xn′ = k xn, xn′  such as radial basis
function (RBF) kernel k xn, xn′ = θ1exp − xn − xn′ 2/θ2
can be used. Then in GPR, the goal is to optimize two hyper-
parameters θ1 and θ2, and we do not need to compute the
high-dimensional vector w. In this study, the objective func-
tions were the simulation results and did not contain any
observation noise. In fact, they generally contain noise.
Therefore, assuming that an objective function has the errorϵ, which follows Gaussian distribution, N 0, σ2 , the predic-
tion follows a multivariate normal distribution,y ∼ N μ,K + σ2I . (6)

In this case, a kernel function is represented byk′ xn, xn′ = k xn, xn′ + σ2δ n, n′ .
Thus, a hyperparameter θ3 = σ2 is added. Including the noise
term in the kernel function contributes to enhanced numeri-
cal stability of the GPR and prevents overfitting of the hyper-
parameters.

The execution environment was an Nvidia A100 80GB
GPU. The maximum number of updates in the hyperparame-
ter optimization was set to 50. Python code was developed
using the GPyTorch library. During preprocessing, the input
parameter x and target y were normalized. The code was run
on a GPU to accelerate the calculations. In this study, the
kernel function was the radial basis function (RBF) kernel.
Adam [19] was used to tune the hyperparameters. The accu-
racy of the predicted values was evaluated using the normal-
ized root mean square error (NRMSE).

NRMSE = ∑i = 0N yi − yt 2Nymax − ymin , (7)

where yi is the predicted value, yt is the true value, ymax is the
maximum value of the test data, and ymin is the minimum value.
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3. Result
3.1 Training data

Figure 1 shows histograms of the plasma volume and
Mercier criteria. The number of computed data points was
60,933, of which approximately 51,000 had an LCFS. His-
tograms of the plasma volume and DMerc min  are shown in
Fig. 1. In the dataset, 25,000 points satisfied the requirement
for the plasma volume (V  > 8 m3) and were able to calculate
the MHD equilibrium on the VMEC. Moreover, there were
5,500 cases which had a volume exceeding that of LHD. The
number of degeneracy cases corresponding to the computed
data was 171,730. However, not all degeneracy cases can be
used owing to a GPU memory shortage. Approximately
70,000 data points were used for learning. In this parameter
range, there was a large fraction of data with DMerc min  < 0.
This is because we lacked prior knowledge of the parameters
for which DMerc min  < 0, and thus, determined the parame-
ters using random numbers. The ratio of the training data to
the test data was 8:2.

It was observed that the coil parameters ϕ2, ϵ, and ϵ2

have relatively larger effects on V  and DMerc than the others.
As the examples, the histograms of plasma volume and
Mercier criterion at β = 2.5% with respect to ϵ2 are shown in
Fig. 2. In particular, the data are not uniformly distributed with
respect to ϵ2, because the parameters are randomly chosen.
With respect to the plasma volume, it tends to be larger whenϵ2 = 0.0 than when ϵ2 > 0.0. In contrast, there are more cases
with DMerc min  > 0 at ϵ2 = 0.0 compared to those at other ϵ2.
Therefore, concerning ϵ2, ϵ2 = 0.0 is optimal to have both
large volume and good MHD stability.

A scatter plot of DMerc min versus V  is shown in Fig. 3.
The large-volume cases are scattered close to DMerc min  = 0,
whereas the small-volume cases include those with largeDMerc min  in the negative direction. This tendency indicates
that better MHD stability will be achieved in cases ϵ2 > 0.0,
at the expence of volume. If Pareto-optimal solutions are
sought for these objective functions, the relationship betweenV  and DMerc min  is an example of a multi-objective opti-
mization problem with conflicting relations.

Fig. 1. The histograms of plasma volume (left image) and Mercier criterion at β = 2.5% (right image). The data without degeneracy cases are plotted.
The vertical axis of graph of DMerc min  is in logarithmic scale. Only the training data which satisfy V  > 8 m3 are plotted in the figures. In the
right figure, the data count for DMerc min  ≤ −0.6 are accumulated to the DMerc min  = −0.6 case.

Fig. 2. The histograms of plasma volume (left image) and Mercier criterion at β = 2.5% (right image) with respect to ϵ2r = ϵ2z = ϵ2. The color contour
represents the ratio of the data points to the total number of data points for each value of ϵ2, and the red line (right axis) represents the total
number of data points for each value of ϵ2.
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3.2 Prediction of GPR
As explained in Sec. 2.4, the GRP model used in this

study has three hyperparameters that were optimized in 30–
50 iterations. The prediction results for the plasma volume V
are shown in Fig. 4. The predicted values were distributed
around Vpred = Vcalc (green line), and the linear regression ofVpred using the least-squares method (orange dashed line)
almost overlapped. A comparison of the standard deviation
of the predicted values obtained by least-squares regression
(magenta line) with the estimated prediction error for each
point by GPR (blue line) indicated that the former was much
smaller. The estimation of the prediction error in the GPR
represents the degree of confidence in the prediction.
Although the prediction error is large, the prediction points
are not widely scattered from Vpred = Vcalc line. This indi-
cates that GPR can effectively capture the relationship between
plasma volume and coil parameters.

Next, Fig. 5 shows the prediction of Shafranov shift for
three plasma β vaules. The predicted values exhibited a larger
degree of dispersion than in the volume case. However, the
green and orange dashed lines almost overlapped, and the
NRMSE was 0.04. There was no significant difference in the
prediction performance among these three β cases. Thus, the
dependence of Shafranov shift on the coil parameters and
plasma β are captured well similarly to one of the plasma
volume.

Figure 6 shows the prediction of the minimum values of
Mercier criterion, DMerc min , for three plasma β vaules. The
predicted values for the large negative ycalc show large devia-
tion from the true values around ycalc = 0 and ycalc < −5,
while the overall dependence of DMerc min  is reproduced to
some extent. For DMerc min , it is important that its value be
positive for optimization. It is expected that the confidence
level of the surrogate model for DMerc min  utilized in the
optimization can be enhanced by adding training data for
which DMerc min  is close to zero or positive. This was
achieved by exploring the optimized configurations using the

surrogate model and repeatedly updating the model with new
training data. We plan to carry out the cycle of prediction and
updating the surrogate model by Bayesian optimization (BO)
[20, 21]. In BO, a GPR trained using a set of training data is
used as a surrogate model to predict the coil parameters with
which the objective function is expected to be maximized.
The objective function (DMerc min  in this case) is then eval-
uated based on these prediction points. The results are added
to the training data, and the surrogate model is updated. By
repeating the cycle, the population of the training data around
the maximum of the objective function increases while seek-
ing the global maximum of the objective function, and the
precision of the surrogate model around the maximum point
is expected to improve.

Fig. 4. Predicted and calculated values of plasma volume, V . The hori-
zontal axis is the calculated values, and the vertical axis is the
predicted values from GPR. The blue lines are estimation of
expectation error ±σ of the GPR, and the green line showsypred = ycalc. The orange dashed line and the magenta region
represent the linear least-squares regression of ypred and its
standard deviation ±σ, respectively. The processing time
required GPR was 5 minutes, and the NRMSE was 0.04. The
variance of the predictions obtained by least-squares method
was 2.25.

Fig. 3. The scatter plot of plasma volume and DMerc min . The cases with V  ≤ 8 are omitted. The enlarged image with DMerc min  ≈ 0 is shown on the
right. The blue cross marks are samples shown in Fig. 7. The right bule point has ϵ2 = 0.0, and the left one has ϵ2 = 0.1, respectively.
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As supporting evidence for the expectation above, the
prediction of DMerc min  with β = 0.5 for a narrower rangeDMerc min  > −0.20 is shown in Fig. 7. The scattering of the
predictions is smaller than that shown in Fig. 6. This sug-
gests that the prediction accuracy will be improved if the rel-
ative population of the training data around DMerc min  ∼ 0
increases, which is important for optimization. It should be
noted here that in the BO, not only the information of the
location of the objective function’s maximum value in the
current set of training data but also the distribution of the
expected value and prediction error of the surrogate model
across the entire parameter space is employed to predict the
next parameters to be examined. Therefore, the training data
of DMerc min  < 0 as well as those of DMerc min  ≥ 0 are uti-
lized for better prediction in BO with GPR.

Finally, to determine the type of magnetic configuration
that tends to have a large plasma volume and good MHD sta-
bility, we arbitrarily selected two examples of magnetic con-
figurations from the training data, as shown in Fig. 8. These
cases correspond to the blue points in Fig.3. In the case withV  = 25.4 m3, Shafranov shift, S = 0.21, is large at finite β.
The distribution of the rotational transformation, ι, changes
from the distribution monotonically increasing at zero β to
the one which has a local minimum around r = 0.75a.

Therefore, the magnetic shear has a weak effect on the MHD
stability for finite-β equilibrium, but the deep magnetic well
in the entire plasma volume contributes to realize DMerc > 0.
On the other hand, in the case with V  = 52.5 m3, the ι distri-
bution monotonically increases similarly to one of LHD. The

Fig. 7. Predicted and calculated values of DMerc min  with β = 0.5 for
the data DMerc min  > −0.20. The meaning of the lines and
points are the same as in Fig. 4. The NRMSE was 0.10, and the
error of predictions obtained by linear least-squares regression
was 0.02.

Fig. 5. Predicted and calculated values of Shafranov shift, S, for the three β-value MHD equilibria. The horizontal axis is the calculated values, and the
vertical axis is the predicted values. The meaning of the lines and points are the same as those in Fig. 4. The processing time required GPR was
11 minutes, and each NRMSE was 0.04. The errors of predictions obtained by linear least-squares regression were 0.005, 0.016, and 0.026,
respectively.

Fig. 6. Predicted and calculated values of DMerc min . The horizontal axis is the calculated values, and the vertical axis is the predicted values. The
meaning of the lines and points are the same as in Fig. 4. The processing time required GPR was 8 minutes, and each NRMSE was 0.03. The
errors of predictions obtained by linear least-squares regression were 0.32, 0.34, and 0.41, respectively.
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magnetic well is negative at r > 0.8a, but the magnetic shear
is strong in the outer region, which contributes to good MHD
stability. Certain distinctive characteristics emerged among
the MHD-stable configurations, although little variation in
the helical coil winding was applied in the present study.

4. Summary
The predictions of V , S, and DMerc min  using GPR

with machine learning captured the tendencies of the training
data. Therefore, the dependence of the expected values of

each objective function on the coil-shaped parameters could
be estimated using the trained GPR as a surrogate model.
The prediction performance of DMerc min  was worse than
those of the two objective functions. The plasma volume and
Shafranov shift were scalar data per configuration; however,DMerc min  was more difficult to predict than the other two
because they were the minimum values for the entire radial
direction, and thus, involved a global trend in equilibrium.
We consider that the prediction accuracy of DMerc min  can
be improved by increasing training data with DMerc min  ⪆ 0
and re-learning the dependence on parameters while search-

Fig. 8. Samples of helical coils and magnetic configurations, Poincaré plots of cross sections, and the corresponding DMerc values. The images in the left
column represent the case with V  = 25.4 m3 and β = 1.5%, whereas those in the right column correspond to the case with V  = 52.5 m3 and β =
1.5%. In figures shown at the bottom, the radial profiles of rotational transform (ι) and the magnetic well (−V″) are also displayed.
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ing for candidate points by a surrogate model. This study
demonstrates the feasibility of estimating the objective func-
tions of a fusion reactor design using GPR. However, the
variance of each prediction obtained by GPR was still consid-
erable, in part because of the inability to utilize a significant
proportion of the data for training owing to insufficient GPU
memory. To address this issue, it is essential to improve the
implementation of GPR code in Python. We plan to introduce
Bayesian optimization to efficiently investigate the Pareto-
optimal solutions. The magnetic configurations obtained
within the scanned parameter range in this study exhibited
less variation than expected. Therefore, we plan to expand
the range of parameters and vary the fixed parameters in the
present study. To optimize plasma confinement performance
and MHD stability, it is necessary to apply indices for turbu-
lent and neoclassical transport as objective functions. Because
we have established a general method for GPR here, adopt-
ing a new objective function is not difficult, given that the
computational cost for the objective function is not high. By
integrating these improvements, we will create surrogate
models for objective functions in GPR and establish a method
to solve multi-objective optimization problems.
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