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Predicting and preventing abrupt plasma termination incidents pose considerable challenges in nuclear fu-
sion research. In the Large Helical Device (LHD), this occurrence is referred to as radiative collapse. During
radiative collapse, impurity particles induce energy dissipation via radiation, hindering the maintenance of plasma
discharges. Our approach aims to predict radiative collapse by analyzing the visible light emitted during such
events. LHD uses approximately ten cameras to continuously observe plasma discharges, resulting in the accu-
mulation of substantial video data from previous experiments. Using these images, convolutional neural network
(CNN) models were trained to identify discharge states and subsequently applied to plasma discharge videos of
the plasma discharges as a predictor. As a result, a determination model was developed, capable of discerning
between stable and collapsed plasma discharge states with an accuracy of 91.5% ± 4% using plasma discharge
images. Notably, this model demonstrated the potential to predict radiative collapse approximately three frames
(66–132 ms) in advance. An examination of the model’s focal points revealed consistency with findings from
prior research.
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1. Introduction
Abrupt termination of plasma discharges poses a crit-

ical challenge in nuclear fusion research, potentially lead-
ing to substantial damage to vacuum vessels and divertor
tiles. One such termination event observed in the Large
Helical Device (LHD) is known as “radiative collapse”.
This phenomenon is triggered by the influx of low-mass
impurities into the plasma. These particles induce plasma
cooling through intense radiation, hindering the mainte-
nance of high-density plasmas. In LHD, the Sudo density
limit represents the density threshold beyond which plasma
performance is compromised. Notably, radiative collapse
poses a considerable obstacle to achieving the Sudo density
limit. Hence, predicting and preventing radiative collapse
is crucial for sustaining plasma densities near this critical
threshold. The Sudo density limit is mathematically ex-
pressed as follows [1].

nsudo
e [1020m−3] = 0.25P0.5B0.5a−1R−0.5. (1)

Here, ne, P, B, a and R denote the electron density, the
absorbed plasma heating power [MW], the magnetic field
strength [T], the average minor radius [m], and the major
radius [m], respectively. In practical applications, main-
taining the density close to this limit can be challenging.

Previous research has elucidated the characteristics
of radiative collapse [2], including its physical mechanism

author’s e-mail: suzuki.yuya@nifs.ac.jp

and the location of its precursors. Radiative collapse is
induced by impurities such as carbon and oxygen, which
emit radiation in the plasma. It typically manifests in the
inner region of the torus and an ergodic region located near
the divertor tiles.

Another study has demonstrated the efficacy of a
data-driven approach in predicting and preventing radia-
tive collapse [3]. This study identified four effective
parameters—n̄e, CIV, OV and Te,edge—through the appli-
cation of machine-learning techniques. Here, n̄e represents
the line-averaged electron density near the magnetic axis,
while CIV and OV denote the emission intensities of car-
bon and oxygen, respectively. Te,edge indicates the electron
temperature in the edge region. By incorporating these pa-
rameters, the likelihood of radiative collapse can be pre-
dicted, thereby enabling its avoidance in actual plasma dis-
charges in LHD.

This paper introduces a novel method for predicting
radiative collapse events in plasma discharges by using im-
ages captured by visible light cameras and convolutional
neural networks (CNNs), a prominent machine-learning
technique. CNN models have also been used in the anal-
ysis of plasma simulations [4, 5]. Our method focuses on
the strong light emission associated with radiative collapse.
This study describes the process of creating datasets for
model training, evaluates the model’s accuracy and predic-
tive performance, and identifies the regions of interest con-
sidered by the model when determining discharge states.
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Fig. 1 Camera layout for the monitoring system in deuterium
discharge experiments on LHD. The inner twisted cir-
cle represents the vacuum vessel, equipped with numer-
ous horizontal and top-bottom viewports. Cameras for
plasma monitoring are positioned to capture both central
and tangential views. Additional cameras are installed
to observe the divertor tiles and walls facing the plasma
heating system.

2. Plasma Monitoring System in LHD
LHD is equipped with a unique plasma monitoring

system comprising approximately ten cameras positioned
at viewports on the vacuum vessel, as illustrated in Fig. 1
[6, 7]. These cameras monitor various aspects of the
plasma, including the divertor tiles, plasma heating system,
and gas fueling. They use charge-coupled devices, which
are highly sensitive to visible light and capable of cap-
turing high-resolution images. However, the cameras are
susceptible to damage caused by high-energy neutrons and
gamma rays emitted during deuterium plasma discharges,
requiring careful consideration in their placement and op-
eration. To protect the camera and its associated equip-
ment from harmful radioactive rays, they are housed in
shielded enclosures positioned over 12 m from the center
of the LHD. Images captured at the viewport are transmit-
ted to the camera via optical fibers, minimizing the risk of
radiation damage. This arrangement has proven highly ef-
fective in extending the camera’s operational life, enabling
it to reliably monitor the plasma, even during deuterium
discharge experiments.

3. Dataset for Model Training and
Evaluation
In our study, we treated the prediction of radiative

collapse as a binary classification problem, distinguishing
between stable and collapsed states. To train the model,
we generated datasets from images of plasma discharges
with radiative collapse. Notably, we used a key parame-
ter known as the density exponent [2] to reliably detect the
occurrence of radiative collapse.

density exponent x = (Ṗrad/Prad)/( ˙̄ne/n̄e). (2)

Fig. 2 Number of incorrect determinations on each ˙̄ne/n̄e. The
dashed line shows ˙̄ne/n̄e = 1.1.

Here, Prad and the dot notation denote the radiation power
measured in megawatts (MW) and the time derivative of
the each parameter, respectively. When the calculated
value of x surpasses 3, the plasma is considered to have
transitioned into a collapsed state. The efficacy of this
threshold has been well-established in previous research
[2, 3]. It is noteworthy that when n̄e remains constant or
exhibits a gradual increase, the derivatives of n̄e are zero or
very small values. In this case, the abovementioned equa-
tion diverges and becomes greater than 3. To avoid this
incorrect decision, a threshold is required for n̄e. Figure 2
shows the number of incorrect determination. If the plasma
did not collapse within 200 ms after the density exponent
exceeded 3, this ˙̄ne/n̄e was recorded as a false determina-
tion. This demonstrates that these errors can be eliminated
by setting the threshold to ˙̄ne/n̄e = 1.1. When the density
exponent exceeded the threshold, we used 0 instead.

In addition to the threshold, the following experimen-
tal conditions were chosen to automatically extract a typ-
ical plasma discharge with radiative collapse from a large
volume of experimental data: B was 2.75 T, Rax was 3.6 m,
the fueling gas was hydrogen, both ECH and NBI were in-
jected, and Wp was greater than 100 kJ. Wp is the amount
of energy stored in the plasma. Using the threshold and the
experimental conditions, plasma discharges with typical
plasma discharge with radiative collapse were extracted, as
shown in Fig. 3. The period from the moment the density
exponent surpassed 3 until the end of the plasma discharge
was considered to be in a collapsed state. The period from
the time excluding start-up time to 0.15 s before the density
exponent surpasses 3 was considered to be in a stable state.
Determining whether a state is stable or collapsed just be-
fore a collapsed state is difficult. As a result, this transition
zone was not used as a dataset for learning in this study.
Images extracted from the collapsed state were classified
as “collapse”, while those extracted from the stable state
were classified as “stable”.

This approach was applied to plasma discharges with
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Fig. 3 Example of a plasma discharge with typical radiative col-
lapse. In this discharge, the radiative collapse occurred
at approximately 4.45 s. The blue dashed line in (d) de-
picts the density exponent calculated without a threshold
on ˙̄ne/n̄e. The density exponent with a threshold is repre-
sented by the orange line.

shot numbers ranging from 157,001 to 162,000 in this
work. As a result, 42 plasma discharges that ended with
a typical radiative collapse were extracted. The videos
of the 42 plasma discharges were divided into “learning
data” and “evaluation data” in a 7:3 ratio. The evalua-
tion data was not used in the learning process. Approxi-
mately ten stable-state images and four collapsed-state im-
ages were extracted from each video. Approximately 600
images were obtained on each camera for the entire learn-
ing dataset, consisting of 450 stable state images and 150
collapsed state images.

4. Evaluation of the Accuracy of
Trained Determination Models
The models were trained using images of the plasma

discharges. The model was constructed based on
“EfficientNet-b4” [8]. EfficientNet is a CNN model that
has been optimized for computational efficiency and learn-
ing capability. “b4” indicates the model’s size. Efficient-
Net includes versions with different sizes, ranging from
“b0” to “b7”. EfficientNet-b4 has a medium level of com-
putational cost and learning ability. We used the softmax
function to normalize the model’s outputs. The softmax
function normalizes the sum of the outputs from 0 to 1.
We developed a model for each of the 13 cameras. Each
model was trained only using images from a single camera.
We changed the weights of all blocks while keeping the
EfficientNet-b4 structure. Batch normalization was used

Fig. 4 Accuracy validation results for each model. The names
of the models that were trained using images from the
port with that name are displayed as the outer labels. The
“Learning” and “Demo” scores represent the accuracy of
the training and evaluation phases, respectively. The “F
Score” indicates the accuracy of the evaluation data and
considers the ratio of stable to collapsed state images.
The “Miss” and “False” scores represent the proportion
of times the model mistook a collapsed-state image for a
stable-state image and vice versa.

in this study; however, data augmentation techniques were
not used. Figure 4 shows the accuracy of each model’s de-
termination. In this figure, “Learning” and “Demo” repre-
sent the accuracy when the learning and evaluation datasets
were used, respectively. “F score” is the accuracy, tak-
ing into account the ratio of stable and collapsed-state im-
ages, as we will explain later. “Miss” is the proportion of
collapsed-state images that the model identified as stable-
state images. “False” is the proportion of stable-state im-
ages that the model identified as collapsed-state images.
The F score is determined using the following formula.

Recall :
T P

T P + FN
, (3)

Precision :
T P

T P + FP
, (4)

F =
2 × Recall × Precision

Recall + Precision
. (5)

Here, T P (True Positive) is the score that the model cor-
rectly identified collapsed-state images, FN (False Neg-
ative) is the score that the model incorrectly identified
stable-state images, and FP (False Positive) is the score
that the model incorrectly identified collapsed-state im-
ages.

Except for the model trained on images from the cam-
era installed in the 6-O port, the models achieved near-
perfect accuracy on the “Learning” dataset. These mod-
els also demonstrate an accuracy of 91.5% ± 4 % on the
“Demo” dataset.

Figure 5 shows that the model trained on images from
the camera installed in the 6-O port had the lowest accu-
racy, whereas the model trained on images from the camera
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Fig. 5 The top and bottom images were captured by cameras
in the 6-O and 9-O ports, respectively. The left, middle,
and right images represent the stable, transition, and col-
lapsed states, respectively. The plasma images from the
6-O port exhibit greater brightness in most regions when
compared to those from the 9-O port.

installed in the 9-O port had a high score. A comparison of
the input images from the cameras in the 6-O and 9-O ports
suggests a possible explanation for the lower accuracy of
the 6-O port. Figure 5 shows an example of input images in
stable state, transition state, and collapsed state from left to
right. The majority of the regions in the images from the 6-
O port were extremely bright, indicating that the brightness
in those regions was saturated. Reducing the sensitivity of
this camera could improve accuracy. From a different per-
spective, hydrogen/deuterium gases were fueled from the
5.5 port, which is near the 6-O port, in the majority of the
plasma discharges used in this study. This result suggests
that observing plasma images from a location distant from
the gas fueling point may be beneficial for predicting ra-
diative collapse.

The higher accuracy of the model in 5.5-L compared
to the one in 6-O can be attributed to the higher resolution
of the camera at the 5.5-L port. Furthermore, the camera at
5.5-L can still observe the plasma-facing wall in its field of
view, even when the emission intensity is high. From this
vantage point, the camera at 5.5-L can observe the shape of
the plasma as it begins to exhibit high emission intensity.

5. Performance as Predictor
Determination models were used as a radiative col-

lapse predictor on 10 videos of plasma discharges in the
evaluation dataset. Frames in the evaluation video were not
used in learning. The video images were captured at a rate
of 30 fps. Figure 6 shows the prediction performance re-
sults for the models. The time to collapse is represented on
the horizontal axis. The model’s output is represented on
the vertical axis. The model’s output indicates how close
the input image is to a collapsed state. The value repre-
sents the output of the model used for classification. If
this value exceeds 0.5, the input image is classified as a
collapsed state; if it is below 0.5, it is classified as a sta-
ble state. In Fig. 6, the blue-hatched area represents a time

Fig. 6 Prediction performance results for the models. The
model outputs were calculated by averaging the outputs
across evaluation datasets. The time intervals designated
as stable and collapsed states in the labeling process are
represented by the blue and red hatched areas, respec-
tively. A model that generates a high value during the
time period represented by the blue-hatched area is not
suitable as a predictor because its output is too premature
to be used for an alarm.

Fig. 7 Images captured by the camera at the 2.5-U port. The left,
middle, and right images correspond to the stable, transi-
tion, and collapsed states, respectively. Compared to the
9-O port, the 2.5-U port images exhibit higher brightness
across most areas.

interval designated as a stable state during the labeling pro-
cess. The absence of any symbol for some models indi-
cates that the outputs of these models surpassed 0.9 before
−0.18 s. Models indicating a collapsed state during this
time period were deemed to have made a premature de-
termination. Certain determination models could predict
2–4 frames (66–132 ms) in advance. The plasma’s energy
confinement time was approximately 100 ms, determined
from the ratio of stored energy to deposited energy within
the experimental scope of this research. If this energy con-
finement time is regarded as the margin for controlling the
plasma, the determination models can serve as predictors
of radiative collapse by applying an appropriate threshold.
The optimal threshold has not been finalized because it
will be determined considering the response times of com-
ponents such as cameras, heating devices, fuel injectors,
computers, and the plasma itself.

Comparing the input images from the 2.5-U camera,
which yielded a premature determination, to those from
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Fig. 8 Results of the focus area analysis using GradCAM. The top heatmaps represent the GradCAM results, while the bottom figures
show the expected field of view as determined by CAD. High contributions to model outputs are indicated by the colored areas.
The regions in the red circle indicate that the model focused on luminescence from the torus’ inboard side. The locations inside
the yellow circle represent luminescence from the divertor tiles.

the 9-O camera, which yielded an accurate prediction, in-
dicates that brightness saturation was the cause of the pre-
mature determination. Figure 7 shows an example of input
images from a 2.5-U port camera in the stable, transition,
and collapsed states, displayed from left to right. The im-
ages from the 2.5-U camera, which resulted in a premature
determination, demonstrate that the brightness in most ar-
eas was saturated, similar to the images from the 6-O cam-
era. The accuracy decreased because the areas available
for determination were reduced owing to the saturation of
brightness.

The low determination accuracy in 6-O and prema-
ture determination in 2.5-U were both attributed to bright-
ness saturation. The difference in resolution and field of
view between the cameras used in 2.5-U and 6-O accounts
for the variation in determination accuracy and prediction
performance. Images in 2.5-U have a higher resolution
than those in 6-O. In 2.5-U images, the plasma shape is
clearly visible in the stable state, but it undergoes signifi-
cant changes in the collapsed state, with the shape disap-
pearing. This contrasts with 6-O images, where the emit-
ting area’s shape remains relatively unchanged during the
transition from the stable to the collapsed state. The higher
resolution of 2.5-U images, combined with the pronounced
changes in the emission area, likely contributed to greater
determination accuracy. Conversely, the minimal changes
in 6-O images during the transition might be attributed to
finite outputs in the transition area.

6. Analysis of the Focus Area
Analyzing the regions of interest using gradient-

weighted class activation mapping (GradCAM) [9] re-
vealed the areas that influenced the model’s outputs, as
shown in Fig. 8. Through the convolutional process, CNNs
generate multiple feature maps, which occur before the
fully connected layer, and the input image is compressed
by square matrices of integers called the kernel, such as

3 × 3 or 5 × 5. The convolutional process is repeated mul-
tiple times, and the arrays generated at each step are re-
ferred to as feature maps. Finally, in the model used in this
study, the input image’s height and width are reduced by
approximately 1/30 following the convolutional process.
The depth becomes approximately 1,800, which is the re-
sult of multiplying the number of color layers by the num-
ber of kernels in each layer. The GradCAM calculates the
relationship between each feature map and the output us-
ing the backpropagation method. It generates a heatmap
that indicates which regions of the input image contribute
considerably to the output by weighting and summing fea-
ture maps. The red-colored areas in Fig. 8 represent re-
gions with high contributions. This technique is widely
used to visualize and understand the focus areas of CNNs
for particular outputs. In earlier research characterizing ra-
diative collapse [2], radiation from plasma on the inboard
side of the torus and radiation near the divertor tiles were
mentioned as characteristic features. In Fig. 8, the regions
highlighted by red and yellow circles represent the above-
mentioned characteristic areas, respectively. This result
demonstrates that the determination model uses relevant
image regions to determine plasma discharge states. Fur-
thermore, the plasma regions are consistent with previous
research [2].

7. Conclusion
This study demonstrated the prediction of radiative

collapse using images of plasma discharges, employing
CNNs, a type of deep learning model. Several trained
models were used to determine discharge states (stable or
collapsed) with 91.5% ± 4 % accuracy. Some determi-
nation models predicted the collapsed states 2–4 frames
(66–132 ms) in advance. Analysis of the regions of inter-
est using GradCAM revealed that the models’ focus areas
aligned with previous research because they encompassed
radiation from the plasma on the inboard side of the torus
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and near the divertor tiles.
Future work will focus on enhancing the model and

controller design to demonstrate the prediction and avoid-
ance of radiative collapse in plasma discharge experiments.
To expedite the model’s determination time, we intend to
optimize computational efficiency and reduce model size
by examining neurons and connections that have a negli-
gible impact on accuracy. Using images captured by mul-
tiple cameras simultaneously, images captured in sequen-
tial frames, or subtracted images obtained from sequential
frames, we aim to enhance accuracy and prediction perfor-
mance as well as elucidate focus areas.
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