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We have constructed a simulation model of the Doppler free spectra for the hydrogen Balmer α line. We are
introducing the laser excitation process into the collisional-radiative model of hydrogen atoms to see how much
saturation can be achieved under realistic plasma conditions and laser power density. Results show that the simulated
spectra were able to successfully model Lamb dips and peaks utilizing this method, with the simulated plasma and
laser parameters showing good agreement to the ones used in the experiment. This model has additionally helped
illustrate further insight into how plasma parameters can affect the spectral characteristics of Lamb dips and peaks.
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1. Introduction
Saturated absorption spectroscopy is an experimental

technique that allows for precise determination of transition
wavelengths typically between a lower atomic energy state and
its more optically energetic states [1]. In order to make an
example measurement of the saturated absorption profile of a
transition line, a laser of a tunable wavelength is scanned over
the entire line profile. Saturated absorption spectroscopy
benefits from a much finer resolution than optical emission
spectroscopy, and is thus prominently used in obtaining spec-
tral distributions of various particles contained within plasma
[2–7]. This is achieved by uncovering the desired transition
line(s) from the Doppler-broadened spectra via dips in the
spectra that occur at the location of the transition(s) in ques-
tion known as Lamb dips. This results in the resolution of
saturated absorption spectroscopy being primarily dictated
by the width of the Lamb dips themselves. It is a widely used
technique in the field of fundamental spectroscopy, where
researchers are particularly interested in ultra-fine structures
of various transition lines [8]. This particular method of
overcoming Doppler broadening of the spectra is why this
technique is also sometimes referred to as Doppler-free satu-
rated absorption spectroscopy.

In this work the hydrogen Balmer-α line is focused on in
particular due to the fact that this line is well understood and
it contains a large number of fine structure components [9–
11]. Previous work has shown that saturated absorption spec-
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tra of the J-resolved components of the hydrogen Balmer-α
line demonstrate different characteristics depending on the
discharge parameters of the plasma [12]. Such dependencies
suggest that saturated absorption spectroscopy can be used as
a tool for plasma diagnostics in high temperature plasmas. In
order to do so however, we would first need to be able to
model the characteristics of saturated absorption spectra as
functions of the plasma discharge parameters. This would
allow us to quantitatively analyze the spectra in a way that
could determine the viability of saturated absorption spec-
troscopy as a diagnostic tool. The creation of such a model is
the main motivation of this work.

In Sec. 2 of this paper we discuss the theory behind sat-
urated absorption spectroscopy and the formation of Lamb
dips. In Sec. 3 we then showcase how we are able to create a
spectra model capable of obtaining the dependencies of spec-
tral Lamb dips on various plasma parameters before going
into more detail in Sec. 4 on the specifics of the collisional-
radiative (CR) model used to generate the necessary energy
level populations of particular particle velocity groups that
are used to calculate the absorption coefficients of the spec-
trum. After briefly looking at the output of the CR model
used in the theory in Sec. 5 we move to discuss the model’s
predictions of the spectral characteristics of Lamb dips as
functions of laser power, electron density, atom and electron
temperature independently. We then finish this paper with the
conclusion in Sec. 6.
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2. Saturated Absorption Spectroscopy
2.1 Lamb dip formation

As previously stated, the key to saturated absorption
spectroscopy’s ability to produce Doppler-free spectral reso-
lutions lies in its creation of Lamb dips that occur at transi-
tion frequencies of the atoms within the plasma. Let us take a
look at how the formation of Lamb dips results in a Doppler-
free spectrum. As shown in Fig. 1, an optical pump laser beam
is injected into the plasma counter to a probe laser beam,
with both beams originating from the same source but with
differing intensities.

With this in mind let us imagine a wavelength that cor-
responds to a transition from lower energy level |p⟩ to upper
energy level |q⟩. Due to the random thermal motion of atoms
within a plasma, the reference point of an atom that contains
a velocity v parallel to the propagation axis of both lasers
would see that the pump and probe lasers would have differ-
ent wavelengths due to an effect known as Doppler shifting.
Since the pump and probe lasers would have different wave-
lengths in the atom’s frame of reference, if the atom res-
onates with either the pump or the probe laser wavelength, it
does not resonate with the other beam unless the component
of the velocity along the laser axis is zero. This means that
there is no change in the absorption due to the particles at that
particular velocity.

If the atom has no velocity component parallel to the
laser axis however, no Doppler shift occurs and both the pump
and probe beams maintain the same wavelength from the
atom’s point of view. In this scenario, the pump beam and
probe beam are now interacting with the same group of parti-
cles. This means that electrons are pumped into the upper
excited level associated with the transition frequency reso-
nant with the beams until the population is saturated. The
probe beam then has a greatly increased chance of encounter-
ing these excited atoms and releasing photons via stimulated
emission as the atoms relax back into the lower energy state.
A dip in the absorption is thus formed at the line center of
the Doppler-broadened spectrum as a result of this process.
This dip is called the Lamb dip, and with it the saturation
spectrum obtains a Doppler-free resolution.

The plotted orange spectrum in Fig. 2 is an example of
the hydrogen Balmer-α line spectrum measured for an induc-
tively coupled plasma (ICP) source produced with an RF
power of 1 kW and an RF frequency of 13.56 MHz similar in
nature to previous work [13, 14]. Note the formation of the
Lamb dips at the transition frequencies (transition wave-
lengths plotted in Table 1). Subtracting this spectra from the
Doppler-broadened spectra (which is given in the absence of
a pump laser) gives what is known as the Lamb peak spectra
shown in Fig. 3.

2.2 The general absorption coefficient
As with all absorption spectra, Doppler-free saturated

absorption spectra are obtained by plotting the absorption
coefficient of the laser as it passes through the plasma versus

Fig. 1. A simplified schematic of experimental apparatus showcasing
the pump and probe laser beams entering the plasma from
opposite sides along the same axis. A more detailed schematic
can be found in previous works [13, 14].

Fig. 2. Comparison between experimental data and simulated Doppler-
free absorption spectra.

Table 1. The seven hydrogen Balmer-α fine structure transition lines,
along with their corresponding wavelengths in nanometers
and relative frequencies centered around transition [c]. Each
transition will be referred to in the subsequent figures by the
label given in the Key column.

Lower–Upper λ (nm) Rel. Freq. (GHz) Key

2P3/2 − 3S1/2 656.2909 −4.0143 [a]
2P3/2 − 3D3/2 656.2867 −1.0853 [b]
2P3/2 − 3D5/2 656.2852 0.0000 [c]
2S1/2 − 3P1/2 656.2771 5.5823 [d]
2P1/2 − 3S1/2 656.2752 6.9554 [e]
2S1/2 − 3P3/2 656.2725 8.8321 [f]
2P1/2 − 3D3/2 656.2710 9.8844 [g]

Fig. 3. (a) Comparison between experimental and modeled Lamb peak
spectra. (b) Log plot of experimental and simulated Lamb peak
spectra.
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that same laser’s frequency. The absorption coefficient can
be calculated at discrete wavelengths as the laser is scanned,
allowing for the derivation of the absorption spectrum over
the entire profile.

In order to successfully model the spectra resulting from
this experimental technique, we must be able to accurately
simulate the measured absorption coefficient. This makes the
plotting of the absorption coefficient versus laser frequency
the goal of our simulations. Briefly put, the frequency scan-
ning of the laser can be simulated by integrating over the par-
ticle velocity distribution for a single frequency and then
repeating this integration process for every frequency value
within the range of the scan to obtain the absorption coeffi-
cient at each scanned frequency. Due to the high temperature
of the medium in this work the studied line profile has been
broadened by the Doppler effect as well as other intrinsic
broadening effects, such as natural broadening, that must be
taken into account in order to accurately model Lamb dips
within the Doppler-free spectra.

It is well understood that the absorption coefficient of a
laser beam sent through a mono-atomic plasma at a particular
frequency λ corresponding to an electron energy transition
from lower state |p⟩ to upper state |q⟩ can be derived from
the difference in the Einstein absorption coefficients of the
two levels in the following manner:αλi (v)dv =ℎρλ B(p, q)nv(p) − B(q, p)nv(q) PLΔλdv, (1)

where αλi (v)dv is the absorption coefficient of the probe laser
light λ for a single transition i corresponding to energy levels|p⟩ and |q⟩ due to the group of particles projected along the
laser propagation direction with velocity v, B(p, q) is the
Einstein coefficient of absorption for a transition from |p⟩ to|q⟩, B(q, p) is the Einstein coefficient of stimulus radiation
from |q⟩ to |p⟩, nv(p)dv and nv(q)dv are the population den-
sity of levels |p⟩ and |q⟩ within velocity width dv respectively,PL is the intrinsic broadening distribution, ρ is the laser
power density, and Δλ is the laser wavelength width, where
both the laser power density and wavelength width are assumed
to be constant.

Note that the Einstein coefficients B(p, q) and B(q, p) in
Eq. (1) are also constants. The velocity distributions are
therefore encoded into the population density distributions
from which nv(p) and nv(q) are determined for a given v, as
will be explained in further detail in the discussion of the
model in the subsequent section.

We should also note that this model will ignore cross-
over resonances. As will be discussed in Sec. 5.1, due to a
lack of J-resolved electron collisional excitation data some
assumptions regarding the population densities of the
J-resolved energy levels had to be made, which in turn meant
that the interference between the studied transitions could not
be modeled accurately and as such were not included. There
is, however, nothing preventing their inclusion in this theory
as long as the relevant atomic data is obtained.

Having now laid the basic framework for obtaining the
general absorption coefficient, Sec. 3 will detail how we go
about obtaining the nv(p) and nv(q) terms and the PL term
from Eq. (1), and Sec. 4 will go in depth as to how the CR
model is used to obtain the necessary J-resolved energy lev-
els to resolve the nv(p) and nv(q) terms used in Sec. 3.

3. Spectra Model
3.1 Encoding the velocity distribution

To determine exactly how the velocity distributions are
included in the model let us look first at the population den-
sities of the energy levels. The particles in the plasma are
assumed to have a velocity distribution, meaning that we can
rewrite the total population density asnv(1)dv = N0PD(v)dv, (2)

where N0 and PD(v) are the total atom density and the
Maxwell-Boltzmann distribution function (a result of the
Doppler-broadening), respectively [15]. The product of the
two, nv(1)dv, is referred to as the ground state atom density
within a velocity width dv. Focusing for now on a particular
transition line i of wavelength λ0 that corresponds to a transi-
tion between levels |p⟩ and |q⟩, if we wish to obtain the pop-
ulation density of levels |p⟩ and |q⟩ having velocity v in the
ensemble nv(1)dv, a similar process to Eq. (2) is usednv(p)dv = r(p)nv(1)dv,nv(q)dv = r(q)nv(1)dv,  (3)

where r(p) and r(q) are the fractions of the population of
particles relative to nv(1) with lower and upper energy levels|p⟩ and |q⟩.

The actual values for r(p) and r(q) are given by the CR
model addressed later on in Sec. 4. Note that when we inte-
grate over velocity, explicit expressions for nv(p) and nv(q)
are necessary.

And so, in order to obtain the total spectra we must take
into account all of the particles within the medium and not
just a particular subset of those with velocity v. The total
absorption coefficient is obtained by integrating Eq. (1) overv and takes the form

αi(λ) = αλi (v)dv
= ℎρλ B(p, q)nv(p)−B(q, p)nv(q) PLΔλdv.

 (4)

It is important to reiterate here that when the integration is
carried out to obtain the total absorption coefficient, explicit
expressions for nv(p) and nv(q) are necessary.

Note that the inclusion of an intrinsic broadening distri-
bution PL in Eq. (1) means that the function will not trivi-
alize into a delta function upon integration, meaning that we
cannot simplify this equation further without additional assump-
tions about PL.
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3.2 PL term
The PL term was rather generally introduced in Sec. 2.1

as the intrinsic broadening term. This term can be used as a
catch-all for the various mechanisms in which a line can be
broadened that are not captured by the physics of the CR
model, as once the spectra becomes Doppler-free these other
types of line broadening that were previously overshadowed
and hidden by Doppler broadening can now be properly
observed [16, 17]. As such, PL can include terms for natural
broadening, broadening via electron density, phase-interrupting
or interatomic collisional broadening, or Stark broadening
processes, for example. It should be mentioned that satura-
tion broadening is deliberately not included in this term, as
this specific type of broadening arises naturally out of the
inclusion of an optical pumping term in the CR model, as
will be explained in Sec. 4. With respect to the PL term in
this work, we will ignore everything except the natural line
width and solely use the PL term to denote natural line broad-
ening, described simply with a Lorentzian distribution. Spe-
cific additions to the physics of this work, such as the
inclusion of Stark broadening, would therefore require
adjusting the PL term to include these phenomena. However,
the following description of the PL term will remain relevant
even in such scenarios.

By virtue of having broadened transition lines, even
when the laser wavelength is different from the central wave-
length of the absorption coefficient profile λ0, there exist
some particles that will absorb the laser light. As was
explained in Sec. 2.1, the reference point of a particle with
velocity v parallel to the laser axis would see the lasers at
different wavelengths λv, with the strength of this shift
depending on v in accordance to Doppler shifting:λv = λ0 1 − vc , (5)

where λ0 is the wavelength of the light absorbed by particles
at rest.

This means that the amount of the natural broadening
due to the particles with velocity v is dependent on the differ-
ence between the shifted wavelength due to the particles of
speed v, λv, and the laser wavelength from an inertial refer-
ence frame, λ. As such the natural broadening distribution
for a given v would be a Lorentzian distribution centered at(λv − λ)

PL = 1π γ/2(λv − λ)2 + (γ/2)2 , (6)

where full width at half maximum (FWHM) γ is simply
given by the natural broadening width. To keep notation con-
sistent, the PL term in the α equations can be written asPL(λv − λ), where λ is the probe laser wavelength, whereas
the PL terms in CR model, which we will see in Sec. 4 can be
written generally as PL(λqp(1 − vc ) − λpump) and PLjk asPLjk(λqjpk(1 − vc ) − λpump) for the J-resolved levels, with λqp
and λqjpk as the specific wavelengths associated with the tran-
sitions from |q⟩ to |p⟩ and from |qj⟩ to |pk⟩ respectively, andλpump being the pump laser wavelength. This notation is used

in the CR model to draw attention to the fact that the PL andPLjk terms are dependent on λqpand λqjpk respectively, as well
as on the pump laser wavelength and not the probe laser
wavelength.

4. Collisional-Radiative Model
As stated previously, the CR model is used to obtain

values of r(p) and r(q) for the energy levels |p⟩ and |q⟩ to be
used within the particle groups nv(p) and nv(q) in explicitly
solving for the absorption spectra α(λ). The CR model used
in the following calculations is tailored specifically for
hydrogen atoms. Simply put, the basic assumption of the CR
model is that the particle populations in each energy level are
in equilibrium states.ddtr(p) = Γin − Γout = 0, (7)

where Γin stands for the sum of all of the collisional and opti-
cally allowed radiative transitions in which a particle may
enter level |p⟩ from any level |q⟩, and Γout is all of the colli-
sional and optically allowed radiative transitions in which a
particle may exit level |p⟩ into any level |q⟩ [18]. We thus
create a system of equations using Eq. (7) for each level |p⟩
excluding the ground state.

Without the existence of a pump laser the equations forΓin and Γout can be written asΓin = q C(q, p)ner(q) + q > pA(q, p)r(q), (8)

and Γout = q C(p, q)ner(p)+ q < pA(p, q)r(p) + S(p)ner(p), (9)

respectively, with C(q, p) being either the excitation or de-
excitation rate coefficients for the transitions from |q⟩ to |p⟩
due to electron collisions, A(q, p) being the Einstein coeffi-
cients for spontaneous radiation from |q⟩ to |p⟩, S(p) referring
to the ionization rate coefficient for level |p⟩, and ne as the
electron density. The model includes all of the |nL⟩ levels fromn = 1 to n = 4, where n is the principle quantum number and L
is the orbital angular momentum quantum number. The coupled
equations are then solved and the particle population distribu-
tions per velocity interval are obtained. Note that recombina-
tion processes are ignored in the current iteration of this model.

4.1 Pump laser term
By turning the pump laser on we introduce induced tran-

sitions into both equations. Just like with the equations for
the absorption coefficient, the wavelength of the pump laser
light absorbed by a group of particles can also be shifted
according to the corresponding projection velocity of the par-
ticles in that group. This once again necessitates the inclu-
sion of an intrinsic broadening term PL in the CR model. The
effect of optical pumping on the saturation of particle popu-
lation densities is well studied, and the inclusion of such a
term into the CR model will inherently lead to saturation
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broadening of the Lamb dips produced by the model [1].
With this in mind, we can update the CR model to include
the pump laser term along with the optical pumping term,

Γin = q C(q, p)ner(q) + q > pA(q, p)r(q)+ q B(q, p)r(q)PLρΔλ,  (10)

and Γout = q C(p, q)ner(p)+ q < pA(p, q)r(p) + S(p)ner(p)
+ q B(p, q)r(p)PLρΔλ .

 (11)

Note that there is again dependence on v in the intrinsic
broadening term PL. The nature of this dependence is identi-
cal to that discussed in Sec. 3.2. This denotes that the central
peak of the intrinsic broadening is dependent on the velocity
group v. This means that the CR model must be run indepen-
dently for each discrete value of v in our model and explains
why the values nv(p) and nv(q) must be solved explicitly
during integration.

The nature of the CR model allows for additional meth-
ods of particle excitation and de-excitation to be easily added
into the equations for Γin and Γout as extra terms, which,
much like the PL term allows for an extremely flexible struc-
ture that can accommodate all manner of particle excitation
and de-excitation methods and effects.

4.2 J-resolved energy levels
Up until this point the CR model we have outlined has

solely dealt with the assumption that the energy levels used
were |nL⟩ levels, where a fixed S = 1/2 is implicitly assumed.
This is largely due to the fact that the data obtained for use in
this iteration of the CR model is not based on levels |nLJ⟩,
but on levels |nL⟩, where J is the quantum number of the
total angular momentum [19].

However, it is possible to extrapolate data from the
J-resolved levels without explicitly knowing the necessary
cross-sectional data needed to calculate the Einstein coeffi-
cients nor the excitation and de-excitation coefficients asso-
ciated with these J-resolved levels, as long as we can assume
that the particle population ratio between the J-resolved
energy levels are at equilibrium and mirror their respective
statistical weight ratios. We assume that interatomic collisions
are infrequent and that the J-level population distribution fol-
lows the statistical weight due to inelastic electron-atom col-
lisions. We consider the former assumption reasonable as
Lamb dips have actually been observed, and the latter because
the relative depth of each observed Lamb dip roughly agrees
with the calculation results. In the future, we intend to con-
struct resolved in J-levels to allow for more detailed analysis.

This would necessitate that the electron density of the
plasma would have to be high enough such that the inelastic
electron-atom collisions happen consistently enough to main-

tain their respective statistical weight ratios, which puts a
lower bound on the total electron density of the plasma that
the model is able to simulate. Once the electron density of
the plasma reaches an order of approximately 1016 m−3 this
condition no longer holds for hydrogen plasma.

Consider a laser-induced transition from |q⟩ to |p⟩. Let
us assume that |q⟩ has two J-resolved energy levels |q1⟩ and|q2⟩ and |p⟩ consists of |p1⟩ and |p2⟩ J-resolved levels. When
a laser light with the wavelength corresponding to the transi-
tion from |q1⟩ to |p1⟩ is introduced, it is supposed that only a
fraction of the |q⟩ level, which is evaluated by the statistical
weights of relevant levels, can be excited to the |p⟩ level.
The actual transition coefficient can be expressed by includ-
ing the ratio of the statistical weights of the relevant levelsB(q1, p1)g(q1)/g(q).

Thus, if level |p⟩ has k J-resolved levels and |q⟩ has j J-
resolved levels, we can sum through all k and j J-resolved
levels for a transition involving a given |p⟩ and |q⟩ to include
natural broadening that is dependent on the specific |qj⟩ to|pk⟩ J-resolved transition wavelength (which are well known
for Balmer-α) while maintaining the same mathematical total
in the pump laser induced transition terms in the CR model.

q B(q, p)PL = q j, k
g qjg(q) B qj, pk PLj, k . (12)

With g(qj)g(q)  being the aforementioned statistical weight ratio of
the J-resolved level g(qj) to the total weight of level |q⟩,g(q).

We can then substitute in the J-resolved inclusive sum-
mation for the averaged transition term in the induced radia-
tion section for both equations Γin and Γout.Γin = q C(q, p)ner(q) + q > pA(q, p)r(q)

+ q j, k
g qjg(q) B qj, pk r(q)PLj, kρΔλ,  (13)

and

Γout = q C(p, q)ner(p)+ q < pA(p, q)r(p) + S(p)ner(p)
+ q j, k

g pkg(p) B pk, qj r(p)PLj, kρΔλ .
 (14)

With the equations for Γin and Γout obtained in full
we can now substitute them into Eq. (7) to solve for the pop-
ulations of the desired energy levels. In this work we are
interested mainly in the Balmer-α lines, so the J-resolved
levels being taken into consideration are the resultant seven
transitions which can be seen as the dotted lines in Figs. 2 to
12. In this work we included energy levels from the ground
state up to 4F, although the pump laser term was only
included in levels associated with the Balmer-α line. As such,
we ended up with a linear system of nine equations, which
were subsequently solved for a given v to obtain the
J-resolved energy levels used in the α(λ) calculations.
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4.3 Multiple transition lines
Before discussing the results, let us quickly mention

how we would go about solving for the absorption spectra of
multiple transition lines simultaneously. We make use of the
superposition principle for these spectra. For a multitude of
transition lines i,α(λ) = i αi(λ)= i

ℎρN0λ B(pi, qi)r(pi)Δλ
−B(qi, pi)r(qi) PLi λv − λ PD(v)dv ,

 (15)

where λi is simply the central wavelength λ0 for the specific
transition i.

Note that this does not necessitate recalculating the val-
ues of nv(p) and nv(q) for each transition i, since the CR
model carries the information of all the transitions you wish
to look at in order to determine the particle population at any
given level, as long as simultaneous calculations of the
energy level populations are carried out, there is no need to
iterate the CR model system of equations over i.
5. Results and Discussion
5.1 CR model output

Having discussed in length the theory behind the CR
model, let us now discuss how we obtained the atomic data
used in it. The model was constructed in Python and uses
atomic data assembled by Sawada [20]. The Einstein A andB coefficients are derived with the formula given in [18]
where the radial components of the wavefunction are calcu-
lated following the method described in Ref. [21]. The cross-
section data for electron collision excitation and ionization

Fig. 4. Plot of the N = 2 & 3 J-resolved energy level populations vs
frequency at the center of the particle velocity distribution
(denoted as chunk 5,000 out of 10,000). Note that there is
slight influence on every energy level population at each
transition frequency, but this influence becomes noticeably
more pronounced with energy levels associated with a
particular transition. Particularly of note is the shared influence
between J-resolved energy levels that share the same |nL⟩. Fig. 5. A comparison of the Doppler-free absorption spectra α(λ) as

the laser power is changed from 1 to 20 mW.

Fig. 6. (a) A comparison of the Lamb peaks of the spectra in Fig. 5 as
the laser power is changed. Note the increasing width as the
laser power increases. (b) A log plot of the Lamb peaks that
further showcases the increase in Lamb width as the laser
power increases.

Fig. 7. (a) A comparison of the Doppler-free absorption spectra α(λ) as
the electron density is changed from 1017 m−3 to 1019 m−3. (b) A
normalized comparison of the absorption spectra α(λ) as the
electron density is changed, showcasing how the Lamb dip
depth ratio is affected by the electron density.
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are derived by the Born approximation [20] with the general-
ized oscillator strength [22], and their rate coefficients are
derived with an assumption of the Maxwell velocity distribu-
tion for electrons.

We now turn to the CR model outputs used in Eq. (3)
before solving for the absorption coefficient α(λ) in Eq. (4).
The CR model outputs the J-resolved energy level popula-
tions for a given velocity interval and a particular laser fre-
quency. Figure 4 gives all the energy level populations verses
frequency for the central interval of the particle velocity dis-
tribution. In other words, this figure is a relation betweennv(p) defined in Eq. (3) and the frequency for a given parti-
cle velocity. In this case the particle velocity is zero along the
laser axis, as the velocity distribution is centered around par-
ticles moving perpendicularly to the laser axis. This means
that there is no Doppler shift of the transition frequencies due
to particle velocity along the axis.

As such, we can see in Fig. 4 that each of the energy

Fig. 8. (a) A comparison of the Lamb peaks of the spectra in Fig. 7 as
the electron density is changed. Note the increasing width as
the electron density decreases. (b) A log plot of the Lamb peaks
that further showcases the decrease in Lamb width as the
electron density increases.

Fig. 9. (a) A comparison of the Doppler-free absorption spectra α(λ) as
the atom temperature is from 400 to 800 K. (b) A normalized
comparison of the absorption spectra α(λ) as the atom tempera-
ture is changed from 400 to 800 K, showcasing the lack of
impact the atom temperature has on the depth ratio of the Lamb
dips.

Fig. 10. (a) A comparison of the Lamb peaks of the spectra in Fig. 9 as
the atom temperature is changed. (b) A log plot of the Lamb
peaks that shows no broadening of the Lamb peaks as the
atom temperature increases.

Fig. 11. (a) A log plot comparing the Doppler-free absorption spectraα(λ) as the electron temperature is changed from 1 to 20 eV.
(b) A normalized comparison of the absorption spectra α(λ) as
the electron temperature is changed from 1 to 10 eV, showcas-
ing the minor impact the electron temperature has on the
Lamb dip depth ratios.

Fig. 12. (a) A comparison of the Lamb peaks of the spectra in Fig. 11
as the electron temperature is changed. (b) A log plot of the
Lamb peaks that more clearly showcases the increase in Lamb
width as the electron temperature increases.
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level populations are influenced at each of the transition fre-
quencies, but the influence increases when the J-resolved
energy level corresponds to one of the energy levels associ-
ated with a particular transition frequency. This is most
notable with both levels 3D5/2 and 3D3/2 seeing substantial
increases in population at the gold [b], black [c], and violet
[g] dotted lines, each of which is a transition involving one
of these two states as the upper energy level, as shown in
Table 1. The fact that both upper energy level populations are
influenced at all three transition frequencies can be attributed
to their shared L-level and the earlier assumption of the
J-level particle populations mirroring their statistical weight
ratios. As a result, any laser influence on one of these J-levels
will invariably have some influence on the other J-level in
order to maintain the assumed statistical balance. This behav-
ior is precisely why crossover resonances are ignored in this
work, as the laser influenced coupling of the J-resolved level
populations resulting from this assumption does not allow for
accurate crossover resonance modeling. In the future, we
intend to construct a model resolved in the J-levels to do
away with this assumption and allow for more accurately
detailed evaluation in this regime.

We can see a similar pattern at the 2S1/2 level, which has
pronounced drops in population at the green [d] and blue [f]
dotted lines, both of which can be verified by Table 1 to con-
tain 2S1/2 as the lower energy level of those transitions. All in
all, these results show that we can expect changes in the
absorption coefficient at these transition frequencies due to
the effect on the particle population levels of the transitions
associated with their respective transition frequencies.

5.2 Spectral characteristics as functions of plasma
parameters
Before we move on, it is necessary to discuss certain

parameter values used in the following simulations. A con-
stant laser beam cross section of 10−4 m2 with a laser width of
3 × 105 Hz was assumed for the duration of the scan. The
laser width additionally dictated the corresponding step size
in the velocity domain, as the laser beam with a given thick-
ness Δλ could only ever correspond to a single particular
velocity group of thickness Δv within the distribution.

The seven fine structure components of the hydrogen
Balmer-α line referenced in the following figures are listed in
Table 1.

The parameter α denotes the spectra as given by Eq.
(15), with α0 denoting the unmodified Doppler-broadened
spectra given by the equationα0(λ) = i α0i (v)dv= i ℎvc B pi, qi nα0 pi−B qi, pi nα0 qi PD(v) ,

 (16)

where nα0(pi) and nα0(qi) are the results of the CR model for
a given |p⟩ and |q⟩ corresponding to a transition i with the
optical pumping term given in Eq. (12) set to zero. These

terms are, in essence, the Doppler-broadened equivalents tonv(p)dv and nv(q)dv in Eq. (2). Plotting the difference α0 − α
highlights the resultant “Lamb peaks” and allows for more
accurate analysis, as can be seen in Figs. 3, 6, 8, 10, and 12.
5.2.1 Laser power

Let us now take a look at how the notable spectral char-
acteristics can be seen as functions of certain plasma parame-
ters, beginning with the dependence on the laser power.
Figure 5 plots the absorption spectra α(λ) for varying laser
powers, from 1 to 20 mW. All other plasma parameters were
held constant between these three simulations, with the atom
temperature set at 600 K, electron temperature at 10 eV, and
the electron density at 1018 m−3. Figure 5 demonstrates a clear
relationship between Lamb dip length and Laser power, with
the depth of the Lamb dips increasing as the laser power is
increased.

Figure 6 plots the normalized Lamb peaks of the three
spectra shown in Fig. 5, with the bottom graph being the log
of the Lamb peaks in order to better showcase the differences
in between the three Lamb peak spectra. Here we can see a
clear relation between the Lamb peak width and the laser
power, as the increase in laser power serves to increase the
amount of optical pumping and, by extension, saturation
broadening of the Lamb peaks.
5.2.2 Electron density

Let us now look at the electron density dependence. We
ran simulations for electron densities ranging from 1 × 1017

to 1 × 1019 m−3, the laser power set to 15 mW with all other
plasma parameters held constant as detailed in the previous
subsection. Electron density dependence can be explicitly
seen in the parameter ne seen in Eqs. (10) and (11) within the
CR model. This means that the values of nv(p) and nv(q)
seen in Eq. (4), and thus in turn α(λ), have an explicit depen-
dence on the electron density.

Looking at Fig. 7(a) we can see that as electron density
increases, the overall structure of the spectra is maintained,
but overall height of the spectra increases dramatically. Upon
close inspection of Fig. 7(b) one can note that the depth ratio
of Lamb dip to the max height of the spectra decreases as the
electron density increases. In other words, the ratio of the
max height of the spectra to the depth of the Lamb dips
decreases as the electron density increases.

Figure 8 shows that as the electron density increases, we
see a decrease in the width of the Lamb peaks. Inversely, the
Lamb peaks broaden as the electron density decreases. This
rather curious phenomenon we believe can be explained due
to saturation broadening, otherwise known as power broad-
ening, which will be expounded on further in a future paper.
5.2.3 Atom temperature

Figure 9(a) plots the absorption spectra for various atom
temperature ranging from 400 to 800 K. As is confirmed by
Fig. 10, there is practically no change at all to the overall shape
of the Lamb dips/peaks, aside from extremely slight broaden-
ing of transitions [d] and [e] in the center of the spectra and
transition [a] on the left, although on an order small enough
that would most likely not be detectable by experiments.
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Both the absolute lack of dependence of the Lamb dip
depth ratio shown in Fig. 9(b) and the minuscule amount of
change in the Lamb peak broadening in Fig. 10 due to the
atom temperature is a clear sign that the saturation parameter
is in no way dependent on the atom temperature. Instead, we
see clear dependence of the atom temperature on the
Doppler-broadened spectra shape and width in Fig. 9(a). The
Doppler-broadened spectra is dependent on the defined most
probable speed, which is itself proportional to square root the
atom temperature, whereas the Lamb dips themselves are
independent of the Doppler-spectral parameters.
5.2.4 Electron temperature

The normalized plot of α(λ) for a range of electron tem-
peratures from 1 to 10 eV shown in Fig. 11(b) shows that the
Lamb dip ratio increases with electron temperature. The fig-
ure also demonstrates a slight suppression in the height of
secondary Doppler-broadened bump associated with transi-
tions [f] and [g].

Figure 12 shows that varying the electron temperature
has a slightly larger impact on Lamb peak width than varying
the atom temperature, however its impact on Lamb peak
broadening is still considerably lesser then that of either the
laser power or the electron density dependence.

5.3 Comparison with experiment
With the relationship between these parameters having

been shown in the previous subsections, it is possible to use
these relationships to compare the constructed model with
experimentally taken data. The experimental data shown in
Figs. 2 and 3 were taken for an ICP source [13, 14].

The given experimental parameters in these figures are a
laser power of 18.6 mW, an atom temperature of about 600 K
and an electron temperature of approximately 10 eV. The
electron density is estimated to be on the order of 1018 m−3.
The graphed simulation took on the values of the best esti-
mations for the experimental atom and electron temperature
at 600 K and 10 eV, as did the simulated electron density
with a value of 1018 m−3. The exception was the simulated laser
power, which was modeled at 18 mW instead of the experi-
mental value of 18.6 mW.

As shown in Figs. 2 and 3, when the model is given
these parameter values, the resultant spectra (plotted in blue
for Figs. 2 and 3) have generally good agreement with the
experimental data (given in orange in both figures), with
some over and undershooting of the Lamb dip magnitudes in
Fig. 2 but particularly good agreement with respect to the
locations and width of the lamb dips in Fig. 3. In addition the
experimental spectrum contains some extraneous peaks in
the 2.5 to 7.5 GHz range that are not captured by the model
(noting again that the x-axis in both graphs is relative to tran-
sition [c] given in Table 1).

A number of these extraneous peaks seen in the experi-
mental spectrum of Fig. 3 that are not represented in the sim-
ulation are well understood to be the result of cross-over
resonance as some of the seven studied transitions share the
same lower energy level. This cross-over resonance causes

population fluctuations in a given transition’s upper energy
level to affect the particle population of other upper energy
levels whose transitions ‘share’ a lower energy state with the
aforementioned upper energy level. The influence of this
cross-over resonance can therefore be found at exactly halfway
between the frequencies of the two transitions in question.
The most easily seen of these crossover resonances in the
experiment is the large peak slightly off center from transi-
tion [e] in Fig. 3, whose peak position corresponds to
halfway between transitions [d] and [f] at roughly 7.2 GHz
relative to transition [c], matching exactly with the center of
the experimental peak near transition [e]. We do not see these
peaks in the simulation as the current iteration of the model
does not account for these types of resonances between pop-
ulation levels.

Explanations for the discrepancy in the experimental
and simulated Lamb dip depth ratios in Fig. 2 are less intu-
itive, but nonetheless are still important to consider. One pos-
sible candidate comes from the model’s current lack of
implementation of momentum transfer collisions that would
allow for particles to move between the velocity intervals
discussed in Sec. 3.2. Accounting for such momentum trans-
fer collisions could in theory serve to ‘replenish’ the amount
of particles at a given transition’s lower energy level, coun-
teracting the saturation effect of the pump laser and increas-
ing the absorption of the probe laser to potentially better
match that of the experiment at these transition frequencies. Of
course it is possible that there are multiple effects at play here
not currently accounted for in the model that are contributing
to this discrepancy in the Lamb dip depth ratio in addition to
the current lack of inclusion of momentum transfer collisions
in the model.

6. Conclusion
In conclusion, our technique is able to successfully

model Doppler-free spectra, showcasing that its theoretical
base looks to be sound. Given plasma parameters similar to
those recorded experimentally, the model effectively simulates
the resultant experimental spectrum. The inconsistencies in the
model’s spectra have been shown to be encouragingly minor
and are mainly due to various atomic effects not having been
included in the current iteration of this model and can there-
fore be rectified with further iteration.

This model has helped showcase further insight into
how plasma parameters such as electron density, laser power,
and atom and electron temperature can affect the spectral
characteristics of Lamb dips such as their shape, depth,
width, and ratio between dips. More specifically, we have
shown that the laser power, electron density, and electron
temperature all play a direct role in both the depth and width
of the spectral Lamb dips due to the dependence of the parti-
cle saturation on these plasma parameters, whereas atom
temperature had demonstrably no effect on the saturation.
Continuing to focus our attention on modeling the spectral
characteristics of Lamb dips in this manner will only serve to

1401028-9



Plasma and Fusion Research: Regular Articles Volume 20, 1401028 (2025)

grant further insight into plasma parameters and atomic pro-
cesses within all sorts of plasma.
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