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The helium I line intensity ratio (LIR) method is used to measure the electron density (ne) and temperature (Te)
of fusion-relevant plasmas. Although the collisional-radiative model (CRM) has been used to predict ne and Te, recent
studies have shown that machine learning approaches can provide better measurements if a sufficient dataset for
training is available. This study investigates a hybrid neural network approach that combines CRM- and experiment-
based models. Although the CRM-based model alone exhibited negative transfer in most cases, the ensemble model
modestly improved the prediction accuracy of Te. Notably, in data-limited scenarios, the CRM-based model out-
performed the others for Te prediction, highlighting its potential for applications with constrained diagnostic access.
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The helium (He) I line intensity ratio (LIR) method has
been used to measure the electron density, ne, and tempera-
ture, Te, in He-containing plasmas [1–5]. Because He atoms
are produced by the deuterium-tritium fusion reaction, this
method could be an important diagnostic tool in future fusion
devices, where plasma diagnostics will be much more limited
than in current experimental fusion reactors. The LIR method
compares experimental data with collisional-radiative model
(CRM) calculations, which demonstrate the dependence of
the He I line emission on ne and Te [6].

However, explaining all the processes that determine the
population distribution is not so simple. Linear plasma devices
have reported that radiation transport of resonance lines in
the ultra-violet (UV) range can significantly disturb the pop-
ulation distribution, particularly the 1P states [7–12]. This
effect depends not only on the neutral pressure, but also on
the neutral temperature [13] and the spatial emission profile
[14, 15]. In low-temperature recombining plasmas, some dis-
crepancies have been identified, and the effect of metastable
atoms, which were produced mainly by the recombination
processes, can influence the population distribution [16].
In high-density plasmas in Magnum-PSI, the reason for the
discrepancy between the CRM and experiments cannot be
explained under certain conditions [17].

Recent works in linear plasma devices have revealed that
machine learning approaches to learn the relation between
the optical emission spectroscopy (OES) data and ne and Te
work well on the measurement of ne and Te [18–21]. Unfor-
tunately, however, this method does not take advantage of
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CRM knowledge. The question is whether it is possible for
the machine learning approach to use CRM data to reduce the
prediction error. In this work, we adopt a physics-informed
machine learning (PIML) approach [22], where the simula-
tion results from a CRM are incorporated into a neural net-
work (NN) via pre-training. We demonstrate cases where the
PIML with CRM data can reduce prediction error.

This study uses the same dataset previously used [23]
from the linear plasma device Magnum-PSI [24], which can
produce high-density (ne < 1021 m−3) and low-temperature
(Te < 5 eV) plasmas in a steady state. The dataset comprises
of the optical emission spectroscopy (OES) data from He and
He-hydrogen (H) mixed plasmas, as well as laser Thomson
scattering (TS) data of ne and Te. The spectroscopy output
CCD data were preprocessed using Method 1 in Ref. [23], in
which the CCD data around 16 line-emissions observed in
pure He plasmas and the edge data in the wavelength direc-
tion are used as inputs. In total, there are 1,826 data points
comprising 49 different discharge conditions and approxi-
mately 40 spatial points in a radial profile.

Figure 1 shows a schematic of the NN models used in
this work. There are three models, i.e., (i) CRM-based model,
(ii) exp-based model, and (iii) ensemble model. In the CRM-
based model, first a CRM was used to compute the reduced
population coefficients, and the relationship between the
coefficients and ne/Te is trained. In formulation II in the CRM,
where quasi-steady-state approximation is used, the excited
level population is described as [6]n(p) = R0(p)neni + R1(p)nen0, (1)

where R0(p) and R1(p) are the reduced population coefficients,
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ni is the ion density, and n0 is the ground state He atomic
density. The first and second terms in Eq. (1) correspond to
the recombining and ionizing components, respectively. The
ranges used for the CRM calculations are 1.0 × 1018 ≤ ne ≤
2.0 × 1021 m−3, 0.1 ≤ Te ≤ 5.1 eV. In addition, the effect of
radiation trapping was taken into account using the optical
escape factor [25], which depends on the optical depth and is
a function of the neutral density and the radius of a cylinder, R.
The calculation was performed in the range of 0 ≤ n0R ≤
2.6 × 1020 m−2. In this study, we performed a full grid scan using
52 points for Te, 77 points for ne, and 16 points for n0R. As a
result, a total of 52 × 77 × 16 = 64,064 combinations were
calculated. The reduced population coefficients for the upper
states of the line emissions at 728.1, 706.5, 501.6, 388.9, 667.8,
492.2, 447.1, 438.8, and 402.6 nm, i.e., 31S, 33S, 31P, 33P.
31D, 41D, 43D, 51D, and 53D, are obtained and used for the
CRM-based model. From Eq. (1), the ideal inputs to the NN
are R0(p)neni and R1(p)nen0. However, for practical implemen-
tation, R0(p)ne2 was used to represent the first term by assum-
ing ni = ne, and R1(p)ne was used to represent the second term,
omitting the unknown n0. The NN consisted of five hidden
layers with 256, 256, 128, 64, and 16 neurons, respectively.

To construct the CRM-based model, we first developed
a NN trained solely on CRM computation data, using 80% for
training and the remaining 20% for validation. The resulting
models achieved mean percentage errors (MPEs) of 0.18%
for ne and 0.25% for Te, both of which are substantially
lower than typical measurement errors. To integrate this with
the experimental OES data, we introduced preprocessing lay-
ers including a hidden layer with 64 nodes. During training
with experimental data, all layers of the CRM-trained NN
were frozen except for the final output layer.

For (ii) exp-based model, a NN with five hidden layers
with 256, 256, 128, 64, and 16 neurons, respectively, was used.
For (iii) ensemble model, the trained CRM-based NN and
exp-based NN are combined with an additional dense layer of
16 nodes. Except for the added last layer, the NN was frozen,
and the trained model was used.

The OES data, which was preprocessed using the Method 1
in Ref. [23], the reduced coefficients, and ne/Te are converted
to logarithmic scale, and a feature scaling was performed on
all the data before being used for training. We use Tensorflow
[26] and Keras [27] libraries to implement these models.

Fig. 1. A schematic of the models used.

Figures 2(a) and (b) shows comparisons between the
three models using MPEs for ne and Te, respectively. The
training data was randomly selected from all data points, and
80% was used for training and the remaining 20% was used
for testing. The calculation was repeated 50 times, selecting
new data each time; each point in Fig. 2 corresponds to an
MPE for an optimized NN, and the same set of data is used
for the three models. The CRM-based model has larger
errors than the exp-based or ensemble models for both ne andTe. The CRM-based model is a transfer learning model, and
the results show that negative transfer [28], i.e., interference
of the previous knowledge (CRM data) with the new learn-
ing and undesirably reduces the learning performance in the
target domain, occurred. Although the reason for the nega-
tive transfer is not clear, it could be caused by the fact that
the CRM calculation does not agree with the experimental
data, as discussed earlier [17], probably due to line integra-
tion effects, molecular effects, transport of metastable states,
etc. When comparing the exp-based model and the ensemble
model, the difference between them was not statistically sig-
nificant at the 0.05 level for ne (t = 1.85, p = 0.072). That is,
the knowledge of CRM did not contribute to the performance
of ne prediction. In contrast, for Te, although the difference in
the MPE is less than 1%, the difference was statistically sig-
nificant (t = 10.30 and p = 7.38 × 10−14), indicating a strong
discrepancy between the experimental and ensemble values.

Fig. 2. Comparisons between the three models using MPEs for the pre-
diction of (a) ne and (b) Te. The data were randomly split into
training and test sets in an 80:20 ratio from a total of 1,826 data
points.
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Even if the CRM model is individually worse, it may still
capture aspects of the Te prediction that the experimental model
does not. The ensemble can learn to down-weight unhelpful
CRM inputs and exploit useful patterns.

One of the challenging issues is whether we could reduce
the necessary data for training the model by using CRM data.
To see the impact, here, we separate the training and valida-
tion data in the unit of discharge to consider realistic situation
[20]. The data from 49 discharges were randomly split by dis-
charge unit into training and test sets, with the train-test ratio
varied from 80:20 to 10:90. The average prediction errors inne and Te for the three models are shown in Figs. 3(a) and
(b), respectively. For instance, at a 10:90 train-test split, five
discharges were used for training, and the remaining 44 dis-
charges were used for validation. This random selection pro-
cess was repeated over 20 times for each split ratio, and the
distribution of the average prediction errors is analyzed.
Unlike Fig. 2, the errors are larger, because the unit of sepa-
ration in Fig. 3 is discharge, i.e., training data does not contain
the same discharge as the test data. The average MPEs of the
CRM- and exp-based models at a train-test ratio of 80:20
were 52.3% and 69.0%, respectively, for ne, and 32.9% and
22.8%, respectively, for Te. These values are much greater
than those in Fig. 2 (37.3% and 17.2%, respectively, for ne,
and 19.7% and 6.8%, respectively, for Te). Like Fig. 2, the
exp-based model and the ensemble model have better perfor-
mance than the CRM-based model in most cases, and the dif-
ference between the exp-based model and the ensemble models
is marginal. For ne (Fig. 3(a)), the average MPE is ∼ 100%
or higher when the training data ratio is 20% or less. The
CRM-based model has a higher average MPE than the other
two models, suggesting that negative transfer also occurred
for all ne cases. However, for Te, when the train-test split
ratio is 10:90, where only five discharge data were used for
training, while exp-based model and ensemble model did not
work properly with the average MPE of ∼ 100%, but the
CRM-based model has lower average MPE of 87%. The dif-
ference between the CRM-based model and exp-based model
at the split ratio of 10:90 was statistically significant (t =
3.21 and p = 0.0018). Therefore, it can be said that the
CRM-based model has the advantage of having a better qual-
ity in extreme cases where the available amount of data is
significantly limited.

In this study, we developed and compared three NN
models for predicting ne and Te from high-density and low-
temperature He containing plasmas: a CRM-based model using
transfer learning, a model trained directly on experimental
data (exp-based model), and an ensemble model combining
both. While the CRM-based model alone exhibited negative
transfer and underperformed relative to the exp-based model,
the ensemble model achieved slightly improved accuracy in
predicting Te, with statistical significance. No significant
improvement was observed for ne. Notably, under extreme
data-scarce conditions, the CRM-based model demonstrated
better performance than models trained solely on experimen-
tal data for Te measurement, highlighting its potential value

in future applications where limited diagnostic access is
expected. In the future, it is expected that the CRM-based
model will be improved by introducing the formulation I of
the CRM, where the transport of He atoms in the metastable
state can be taken into account, which can complement data-
driven approaches and increase diagnostic robustness, espe-
cially in low-data regimes.
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