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In this study, Physics-Informed Neural Networks (PINNs), a deep learning-based framework is applied to a
partial differential equation in multi-dimensional space. As a preliminary investigation, the diffusion equation is solved
and we examine how computation time varies with spatial dimensionality. The computational time with that of the
Finite Difference Method (FDM) with keeping the computation accuracy. The results show that the PINNs can be
faster than the FDM in a higher-dimensional space due to the mesh-free characteristics.
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Behaviors of magnetically confined plasmas are governed
by a balance between losses due to turbulence driven by spa-
tial inhomogeneities in temperature and/or density [1] and
power injection by high-frequency waves and neutral beam
injections [2]. Conventional transport studies have adopted
the gyrokinetic approximation, which assumes the turbulence
frequency is much lower than the ion cyclotron frequency,
enabling the five-dimensional phase space simulations [3]. In
contrast, wave heating is required to resolve the cyclotron
motion so that the six-dimensional simulation is necessary. A
unified treatment of heating and transport has become neces-
sary, because the turbulence could be directly affected by the
heating processes [4]. Therefore, six-dimensional simulations
are required. However, the mesh-based simulations in six-
dimensions are too computationally expensive even with mod-
ern computer performance. Therefore, mesh-free approaches
are worth considering.

Physics-Informed Neural Networks (PINNs), deep
learning-based methods, have recently gained attention. They
have been applied in various fields, including fluid dynamics
[5], hydrology [6], chemistry [7], materials science [8], and
Earth system modeling [9]. High-accuracy results have been
reported in two-dimensional fluid problems [5]. However, in
such low-dimensional cases, the PINNs have generally offered
no advantage over the FDM in speed or accuracy. Since the
PINNs do not require spatio-temporal meshes, they may
have advantages in high-dimensional problems.

As a first step toward six-dimensional plasma simulations,
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in this study, the six-dimensional diffusion equation is solved
using both the PINNs and the FDM, and their computational
performance and accuracy are evaluated. Figure 1 illustrates
a schematic of the PINNSs, a deep learning-based framework
for solving ordinary and Partial Differential Equations (PDE)
[10]. In the blue box, spatial coordinates x and time t are
introduced into a network composed of linear transformations
and sigmoid activations o, producing the solution u. In the
green box, automatic differentiation is used to compute partial
derivatives of u, allowing reconstruction of the governing
PDE. Training proceeds by minimizing this total loss until it
falls below a tolerance € which is explained in the following
paragraph. In this way, the PINNs can incorporate physical
constraints directly into the learning process, enabling solu-
tions that remain consistent with the underlying physics.

In this study, we numerically solve the diffusion equa-
tion in a D-dimensional space using the PINNs and the FDM.
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The governing equation is given as:

D
ou = Z axdzu, (D
d=1

where x; denotes the dth-spatial coordinate. The loss func-
tion £ used to incorporate the physical information denoted
in Fig. 1 is defined as:
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The first term on the right-hand side of Eq. (2) corresponds
to the loss associated with the initial condition. Here, Nc
represents the number of training points used to enforce the
initial condition. The neural network solution u, derived from
these inputs, approximates the initial condition. The refer-
ence data u;c represents the exact initial profile. The second
term on the right-hand side of Eq. (2) corresponds to the
PDE loss, where Nppg denotes the number of collocation
points used to enforce the governing equation. By applying
automatic differentiation to the neural network output u, we
obtain the residual of the multi-dimensional diffusion equa-
tion. The network is trained to minimize the total loss £. As
an initial condition, we assume a delta-function profile. The
computational domain is set to —1 < x4 < 1 for each spatial
direction and 1/8 < t < 5/8 for the temporal range. For the
PINNSs, we initialize training using the analytical solution at
t = 1/8 as the initial profile. Training is terminated once the
total loss satisfies £ < 10~ and the relative error between the
PINNSs solution and the analytical solution is less than 4%.
Here, the analytical solution used for comparison is given by:
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In the FDM-based simulations, we apply the second-order
central difference approximations. Since the numerical error
scales as Axz%, we choose a spatial step size Axg = 0.2 to
ensure a relative error € of approximately 4%, where:

€= f|u - uexacl|2dx (4)
f|uexact|2dx

The temporal step size is determined to satisfy the stability
condition At < Ax4*/(2D). All the PINNs models are imple-
mented using the open-source Python library PyTorch and
are constructed based on the methodology proposed by M.
Raissi et al. [11].

We evaluate computational time by varying the spatial
dimensionality D from 1 to 6. Figure 2 shows the x,-axis pro-
file at x;, = 0 (2 < k < 6) for the six-dimensional diffusion
equation solved using the PINNs, along with the FDM results.
The PINNSs solution achieves accuracy comparable to the FDM.
Figure 3 presents the computational time for both methods
across dimensions. For the FDM, the computation time
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Fig.2. Simulation of 6-dimensional diffusion equation.
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Fig. 3. Dependence of computational time with dimensions.

increases with dimensionality, following a power-law trend.
The PINNs show a slower increase in contrast to the FDM. In
low dimensional cases such as D < 4, the PINNs is slower
than the FDM. When D > 5, the PINNs become faster than
the FDM, and in the case with D = 6, the PINNs is almost ten
times faster than the FDM. The computational time is sensi-
tive to the number of collocation points, as PINNs minimize
the PDE residual on collocation points without using spatial
meshes. In this analysis, 500 collocation points are used for
each case. As the number of dimensions increases, the train-
ing takes longer to converge, which is the main cause for the
increase of the computational time of PINNs. Thus, the
PINNs could be a strong candidate for the six-dimensional
simulations.

In conclusion, we solve the diffusion equation in multi-
dimensional space using the PINNs and compare the compu-
tational time with that of the FDM. By systematically varying
the number of dimensions, we demonstrate that the PINNs
exhibit a clear advantage in computational efficiency over the
FDM in higher-dimensional problems.
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