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We demonstrate the estimation of electrostatic potential fluctuations in dynamically varying Kelvin-Helmholtz
turbulence using multi-scale convolutional neural network. The turbulence field is obtained from simulations based
on a reduced fluid model in cylindrical magnetized plasmas. The target turbulence shows limit-cycle oscillations, and
coherent and spiral structures are generated and annihilated repeatedly. High accuracy of the prediction is realized for
the electrostatic potential field, and the estimation of the particle flux calculated from the predicted potential agrees
with the answer with 98.4% accuracy. Behavior of the prediction accuracy is also discussed by changing the hyper
parameters, such as the number of filters and the size of the training data.
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Particles/heat transport is determined autonomously by the
turbulence generated by the plasma inhomogeneities. Under-
standing the characteristics of the transport based on direct
measurement is an urgent issue. However, it is difficult to
measure the flow field fluctuations. For instance, a huge equip-
ment is required for the heavy ion beam probe [1], and many
assumptions are needed for the Langmuir probes [2]. Addi-
tionally, there are velocimetry methods that use the image cor-
relation technique [3], but they require assumptions such as
incompressibility. Therefore, it is necessary to develop a sim-
ple and generic method.

Recently, it has become possible to observe plasma fluc-
tuation fields as images [4]. Multi-scale convolutional neural
network (CNN) have demonstrated high effectiveness in the
field of image processing. In fact, multi-scale CNN based
estimation of turbulent fields on the solar surface has been
proposed [5, 6]. This method has been applied to magnetically
confined plasmas and succeeded in estimating electrostatic
potential fluctuations in drift wave turbulence [7]. In that
work, the neural network, multi-scale deep learning (MSDL)
[6], is designed with the density fluctuation as the input and
the electrostatic potential fluctuation as the output. On the
other hand, it has been pointed out that Kelvin-Helmholtz (KH)
turbulence is important in basic plasma devices [8]. Since the
correlation between density and potential is weak in KH tur-
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bulence, it is not obvious that the method in [7] is applicable
for the KH turbulence. In this study, we apply the method
presented in [7] to estimate the electrostatic potential fluctua-
tion of the KH turbulence with dynamic variations in a linearly
magnetized plasma. The flow fluctuation field is evaluated
from the E X B drift with the predicted electrostatic potential
fluctuations in a cold plasma approximation.

The simulations are based on a three-dimensional fluid
model of a cylindrical plasma, solving an extended equations
of the Hasegawa-Wakatani model [9, 10]. By introducing a
vorticity source, it is possible to drive the KH instability,
which is important in linear devices [11]. The obtained turbu-
lence includes limit-cycle oscillations (LCOs) of the back-
ground field and fluctuation energy. The plasma conditions are
the same as in [9]. In this study, a neural network, MSDL [6],
is utilized and optimized to density fluctuations as the input
data and electrostatic potential fluctuations as the output.

Multi-scale CNN consists of several spatial filters with
different size in order to detect global and fine structures
simultaneously [6]. The structure of a multi-scale CNN is
shown in Fig. 1. In the first convolution layer shown in the
left block, the convolution is performed in three dimensions
along the spatial and temporal axes, resulting in a four-
dimensional array containing the spatial axis, the temporal
axis, and the number of filters. In the last block, shown in the
right block, convolution is performed only on the spatial axis.
Five kinds of special filters are used, whose size in radial and
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Fig. 1. Structure of multi-scale convolutional neural network, MSDL
[6]. Here, green is convolution layer, blue is batch normalization
layer, and SE is squeeze-and-excitation, respectively.
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Fig. 2. Spatial distributions of electrostatic potential. Left and right
panels show the simulation data and that estimated by the pro-
posed method, respectively.

azimuthal directions are 3 x 3,7 x 7, 15 x 15, 31 x 31, 51 x 51,
where these numbers correspond to the number of pixels.
The size of a pixel is g¢ and in the radial and azimuthal
directions, respectively, Where a is the plasma radius and a =
10 cm in this case. The filter size of 31 pixels corresponds to
the scale of the dominant mode in the simulations. The filters
with sizes 15, 7 and 3 correspond to the higher harmonics of
the dominant mode. The 51-pixel filter corresponds to the
zonal scale. The number of frames for the training, the vali-
dation, and the test are 1170, 155, and 150, respectively, with
the time interval of At = 1 (the time is normalized by ion
cyclotron frequency). The estimation method is applied to KH
turbulence to estimate the electrostatic potential fluctuations
from the density fluctuations.

The snap-shots of the spatial distributions of electrostatic
potentials obtained by multi-scale CNN and that obtained by
simulation is shown in Fig. 2. The correlation coefficient
including time evolution is 0.96, indicating that the two are in
good agreement with high accuracy.

The azimuthal spectrum is evaluated to quantify the esti-
mation accuracy. The azimuthal Fourier mode decomposition
of the electrostatic potential ¢(r, 6, t) is given by

$(r,6,1) = D Gl ™. (1

The predicted and simulated azimuthal mode spectra for m =
1,2, 3, and 4 at #/a = 0.58, where  denotes the radial posi-
tion and « is the plasma radius, agree with each other to a
high degree of accuracy. The azimuthal mode spectrum of
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Fig. 3. Time evolution of coherence between prediction and answer.
Here, the color indicates the number of frames of training data.
Green, red, and blue represent the case with 490, 770, and 1170
training data, respectively.

the simulated and predicted data are introduced as ¢,,"(t) and
¢,,F (1), respectively. Their relative errors are 9.5%, 0.8%,
5.5%, and 12%, respectively. In order to improve the predic-
tion accuracy, a new spatial filter of size 71 was added to the
branched convolutional layers shown in green, as illustrated
in Fig. 1. The filter is designed to capture the scale of the
background field. The coherence becomes 0.99, 0.96, 0.88,
and 0.74, for m = 1, 2, 3, 4 respectively. Here, the coherence
was 0.98, 0.89, 0.76, and 0.55 before adding the filters. The
phase angle between the answers and predictions of each
mode is 0.011, 0.008, and —0.007, for m = 1, 2, 3 respec-
tively, which was 0.013, —0.06, and —0.017, before adding
the filters. It is noted that the relative error is calculated
based on both the amplitude and phase differences between
¢, (t) and ¢,,,P(t), whereas the coherence is determined solely
from the phase information. Due to this difference, discrep-
ancies arise in the ranking of the relative error and coherence
values for each mode. Accuracy of the coherent structure is
confirmed to improve by increasing the filters.

The time evolution of coherence between the simulation
and the prediction is shown in Fig. 3. The coherence degrades
and improves repeatedly. This oscillation is synchronized with
the LCOs. By increasing the training data from 490 to 1170
ensembles. The coherence at # = 49 becomes 0.65 from 0.3.
In this study, we show that when the fluctuation structure
evolves in a limit cycle manner, the prediction accuracy
remains high for coherent structures. However, as the struc-
ture breaks down and transitions into an incoherent state, the
prediction accuracy decreases. Nevertheless, we demonstrate
that increasing the training data can help mitigate this decline
in accuracy, even in the incoherent state. In this context, a
coherent structure is defined as a state in which a single vor-
tex stably persists, whereas an incoherent structure corre-
sponds to a state characterized by the splitting of vortex pairs
into multiple vortices or the emergence of spiral patterns.

In summary, we demonstrate the estimation of electro-
static potential fluctuations of KH turbulence by using multi-
scale CNN. High accuracy of the prediction is realized for the
electrostatic potential field, and the estimation of the particle
flux calculated from the predicted potential is 98.4% accu-
racy. We also observe the improvement of the electrostatic
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potential fluctuations estimation for spiral structures when
varying hyperparameters such as the size of the training data.
This study validates the CNN model using simulation data, and
the final goal is to apply the model to experimental data.
Before applying the proposed method to experiments, the fol-
lowing extensions are required. (1) Acquire light emission
intensity data and use it as input for the CNN: Currently, the
CNN requires two-dimensional cross-sectional data of plasma
density as input. In experiments, it is possible to obtain two-
dimensional image of the light emission intensity using tomog-
raphy techniques [4]. The emission intensity can be expressed
as a function of density and electron temperature [12]. There-
fore, it is necessary to train the CNN with considering not only
the density but also the electron temperature fluctuations. (2)
Eliminating noise present in actual experimental data: Noise
is inevitable in experiments so that removing the noise becomes
a key issue. These extensions will be reported in future.
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