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We evaluate the performance of Gaussian Process Regression (GPR) in estimating the current-voltage
characteristics of a Langmuir probe, as well as its first and second derivatives. The results show good agreement
between the estimated and measured data. When comparing GPR with the conventional Savitzky-Golay filter, we find
that GPR is comparable to the Savitzky-Golay filter in terms of the accuracy of the estimated data. The uncertainty of
the estimated data is also evaluated, and the results indicate that GPR underestimates the uncertainty of the electron
current. This is likely due to the assumption of a homoscedastic noise model in the standard GPR.
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Phase space dynamics is crucial in various fields of
plasma physics, such as space and magnetospheric plasma and
fusion research [1–3]. To elucidate the understanding of the
phase space dynamics, energy distribution measurements of
electrons and ions are essential. The Langmuir probe and
energy analyzer are widely used diagnostic tools for measur-
ing the electron energy distribution function (EEDF) in basic
plasma experiments and satellite measurements. The EEDF
is evaluated by taking the first derivative of the current-
voltage characteristics obtained from the energy analyzer or
the second derivative from the Langmuir probe [4].

However, evaluating the EEDF is often challenging
because derivative measurements are highly sensitive to noise.
Several methods have been proposed to estimate the EEDF
from current-voltage characteristics, such as analog differen-
tiation, Fourier decomposition with an additional superim-
posed sinusoidal wave, and numerical differentiation after
applying a digital filter, including the Savitzky-Golay filter.
The effectiveness of each method has been discussed [4, 5].
However, little attention has been given to evaluating the
uncertainty of the differentiated values. In this study, we pro-
pose a method to estimate the first and second derivatives of
the current-voltage characteristics of a Langmuir probe using
Gaussian Process Regression (GPR) [6]. GPR is a Bayesian,
nonparametric regression method that considers the correla-
tion between data points and has the potential to evaluate the
uncertainty of the estimated values and its derivatives [7].
We evaluate the first and second derivatives of the current-
voltage characteristics using GPR with experimental data and

*Corresponding author’s e-mail: y-kawachi@energy.nagoya-u.ac.jp

compare the results with those obtained using the Savitzky-
Golay filter. Additionally, we assess the uncertainty of the
estimated values using GPR and discuss its effectiveness in
estimating the EEDF.

Test data for this study were obtained from Langmuir
probe measurements in a magnetized plasma device,
NUMBER. NUMBER is a pulsed one-sided mirror device that
produces ECH plasma using a 2.45 GHz microwave [8]. The
Langmuir probe was inserted into the plasma, and the current-
voltage characteristics were measured in argon plasma with a
mass flow rate of 10 sccm. The voltage and current dataset
was obtained by downsampling to 200 points from a single
voltage sweep, as shown in Fig. 1.

The GPR model was trained using the voltage and cur-
rent dataset and implemented using the Python library
GPflow [9]. The kernel function was set to the Radial Basis
Function (RBF) kernel defined as,

k x,x′ = θ1exp −(x − x′)22θ22 + σ2δ x,x′ . (1)

Here, x and x′ represent observed data points. θ1 is a param-
eter of the RBF kernel that controls the amplitude of the esti-
mated function, while θ2 determines the covariance scale of
the data, some what similar to the window size in the
Savitzky-Golay filter. σ2 is the noise variance, which accounts
for uncertainty. These parameters were optimized using the
maximum likelihood method.

Figure 1(a) shows the estimated current-voltage charac-
teristics obtained using GPR. For comparison, the Savitzky-
Golay filter, a conventional and reliable method capable of
analytically evaluating the n-th derivative, was also applied.
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The parameter settings for the Savitzky-Golay filter were set
to a polynomial order of 3 and a window size of 40. It can be
seen that GPR accurately estimates the I-V characteristics.
Furthermore, when compared to the Savitzky-Golay filter,
GPR demonstrates comparable performance. This trend is
also observed for the first- and second-order derivatives,
where the estimation results exhibit nearly the same shape.
Focusing on the second-order derivative evaluation, the two
methods exhibit a slight difference, with the peaks being rel-
atively shifted by approximately 1 V. When discussing the
EEDF, the tail and integral values are important, so the
extent to which this shift affects the analysis needs to be con-
sidered carefully. The parameters of Savitzky-Golay filter is
arbitary chosen by users while the kernel function of GPR is
optimized by the maximum likelihood method. So the GPR
might be closer to the true solution than the Savitzky-Golay
filter. It is difficult to make a definitive judgment on the fac-
tors determining this, so it would be desirable to compare it
with an analog filter or mock-up data, or to increase the
ensemble, which is left for future work.

Here, we evaluate the uncertainty of the estimated data
using GPR, as shown in Fig. 2. The uncertainty is defined as
the standard deviation of the posterior distribution of the esti-
mated data. We note that regions where data is lacking
exhibit large uncertainty, which is consistent with the charac-
teristics of GPR. Figure 2(b) shows an enlarged view of the
region where the ion current is collected when the bias volt-
age is sufficiently negative to repel electrons. We confirm

Fig. 1. (a) I-V characteristics of the data obtained from the Langmuir
probe. X marks indicate the measured data, while the solid blue
line and the dashed orange line represent the estimated results
obtained using the Savitzky-Golay method and Gaussian
Process Regression, respectively. The (b) first and (c) second
derivatives were also estimated by both methods and are
indicated in the same manner.

that the uncertainty is in good agreement with the measured
data. However, the uncertainty of the electron current, where
the bias voltage is sufficiently positive to repel ions, is under-
estimated, as shown in Fig. 2(c). This is likely due to the
assumption of a homoscedastic noise model in standard
GPR. In the case of the Langmuir probe, the electron current
is much larger than the ion current, and the noise level is also
higher. Therefore, the uncertainty of the electron current
should be larger than that of the ion current. However, stan-
dard GPR assumes a uniform noise level across all data
points, which may lead to an underestimation of the electron
current uncertainty. To address this issue, we need to extend
the method to estimate the uncertainty of the electron current
by considering a heteroscedastic noise model [10]. This
approach will be discussed in future work.

In summary, we evaluated the performance of GPR in
estimating the current-voltage characteristics of a Langmuir
probe, as well as its first and second derivatives. The results
show good agreement between the estimated and measured
data. When comparing GPR with the conventional Savitzky-
Golay filter, we find that GPR performs comparably to the
Savitzky-Golay filter in terms of estimation accuracy. We
also evaluated the uncertainty of the estimated data, and the
results indicate that GPR underestimates the uncertainty of
the electron current. This is likely due to the assumption of a
homoscedastic noise model in standard GPR. Future work
will focus on extending the method to improve uncertainty
estimation for the electron current by incorporating a het-
eroscedastic noise model.
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Fig. 2. (a) Evaluated uncertainty of the estimated data using GPR. The
solid blue line represents the estimated data, while the shaded
area indicates the uncertainty. The measured data is also
indicated by X marks. Zoomed-in views of the regions of (b)
electron current and (c) ion current are shown.
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